Cables

Theory of Structure - I

Contents

- Introduction to Cables
- Assumptions for the derivation of relation b/w force in cable and its slope:
- Cables subjected to concentrated loads
- Cables subjected to uniformly distributed loads

Introduction

- Cables are pure tension members, are used for support to transfer the load from one member to another.
- Used as
- Supports to suspension roofs
- Suspension bridges
- Trolley wheels
- Self weight of cable is neglected in analysis of above structures
- When used as guys for radio antennas or transmission lines, derricks(loading crane);cable weight is considered.
Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET

Assumptions for the derivation of relation b/w force in cable and its slope:

- The cable is perfectly flexible.
- The cable is perfectly inextensible.
- Due to flexibility cables offer no resistance to shear \& bending, therefore force acting on cable is always tangent to the cable at points along its path.
- Due to inextensibility, cable has constant length before and after the application of load, geometry remain fixed, the cable is treated as a rigid body.

Cable subjected to concentrated loads

- When cables of negligible weight supports several concentrated loads, the cables takes the form of several straight -line segments, each of which is subjected to a constant tensile force.
- L1,L2,L3, P1 \& P2 are known,
- There are nine unknown which we have to determine.
- Where ' $Ө$ ' is the angle of chord A and B.
- From nine unknown, three segments are in tension.
- We can write two equilibrium equation at each point $A, B, C \& D . S o$ total of eight equations.
Instructor:Engr.Mehboob
- Where yc and yd are the sag at points C \& D.

Cable Subjected to Concentrated Loads

$+{ }^{+} \Sigma M_{A}=0$:

Instructor:Engr.Mehboob

$\xrightarrow{+} \Sigma F_{x}=0$:

$+\uparrow \Sigma F_{y}=0$:

Example 5-1

Determine the tension in each segment of the cable shown in the figure below. Also, what is the dimension h ?

SOLUTION

+) $\Sigma M_{A}=0$:

$$
\begin{gathered}
T_{C D}(3 / 5)(2 \mathrm{~m})+T_{C D}(4 / 5)(5.5 \mathrm{~m})-3 \mathrm{kN}(2 \mathrm{~m})-8 \mathrm{kN}(4 \mathrm{~m})=0 \\
T_{C D}=6.79 \mathrm{kN}
\end{gathered}
$$

Joint C

$$
\begin{aligned}
& \rightarrow \Sigma F_{x}=0: \\
& +\uparrow \Sigma F_{y}=0: \quad 6.79(3 / 5)-T_{C B} \cos \theta_{\mathrm{BC}}=0 \\
& +\theta_{\mathrm{BC}}=32.3^{\circ} \quad T_{C B}=4.82 \mathrm{kN}
\end{aligned}
$$

$\underline{\text { Joint B }}$

$\xrightarrow{+} \Sigma F_{x}=0: \quad-T_{B A} \cos \theta_{\mathrm{BA}}+4.82 \cos 32.3^{\circ}=0$
$+\uparrow \Sigma F_{y}=0: T_{B A} \sin \theta_{\mathrm{BA}}-4.82 \sin 32.3^{\circ}-3=0$

$$
\begin{gathered}
\theta_{\mathrm{BA}}=53.8^{\circ} \quad T_{B A}=6.90 \mathrm{kN} \\
h=2 \tan \theta_{B A}=2 \tan 53.8^{\circ}=2.74 \mathrm{~m}
\end{gathered}
$$

Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET

Cable Subjected to Distributed Load

$$
T \cos \theta=T_{o}=F_{H}=\text { Constant }
$$

$T \sin \theta=W$

$$
\frac{d y}{d x}=\tan \theta=\frac{W}{T_{o}}
$$

Parabolic Cable: Subjected to Linear Uniform distributed Load

$$
\begin{gathered}
\frac{d y}{d x}=\tan \theta=\frac{w_{o} x}{T_{o}} \\
y=\int \frac{w_{o} x}{T_{o}} d x \\
y=\frac{w_{o} x^{2}}{2 T_{o}}+\oint_{1} \\
T_{o}=\frac{w_{o} x^{2}}{2 y} \\
\text { at } x=L, T=T_{B}=T_{\max } \\
T_{\max }=\sqrt{T_{o}^{2}+\left(w_{o} L\right)^{2}}
\end{gathered}
$$

$$
\begin{array}{ll}
+\Sigma F_{x}=0: & -T \cos \theta+(T+\Delta T) \cos (\theta+\Delta \theta)=0 \\
+\uparrow \Sigma F_{y}=0: & -T \sin \theta+w_{o}(\Delta \mathrm{x})+(T+\Delta T) \sin (\theta+\Delta \theta)=0 \\
+\Sigma M_{O}=0: & w_{o}(\Delta \mathrm{x})(\Delta \mathrm{x} / 2)-T \cos \theta \Delta \mathrm{y}-T \sin \theta(\Delta \mathrm{x})=0
\end{array}
$$

Dividing each of these equations by Δx and taking the limit as $\Delta x \rightarrow 0$, and hence
$\Delta y \rightarrow \theta, \Delta \theta \rightarrow 0$, and $\Delta T \rightarrow 0$, we obtain

$$
\begin{array}{r}
\frac{d(T \cos \theta)}{d x}=0 \\
\frac{d(T \sin \theta)}{d x}=w_{o} \\
\frac{d y}{d x}=\tan \theta \tag{5-3}
\end{array}
$$

Integrating Eq. 5-1, where $T=F_{H}$ at $x=0$, we have:

$$
\begin{equation*}
T \cos \theta=F_{H} \tag{5-4}
\end{equation*}
$$

Integrating Eq. 5-2, where $T \sin \theta=0$ at $x=0$, gives

$$
\begin{equation*}
T \sin \theta=w_{o} x \tag{5-5}
\end{equation*}
$$

Dividing Eq. 5-5 Eq. 5-4 eliminates T. Then using Eq. 5-3, we can obtain the slope at any point,

$$
\begin{equation*}
\tan \theta=\frac{d y}{d x}=\frac{w_{o} x}{F_{H}} \tag{5-6}
\end{equation*}
$$

Performing a second integration with $y=0$ at $x=0$ yields

$$
\begin{equation*}
y=\frac{w_{o}}{2 F_{H}} x^{2} \tag{5-7}
\end{equation*}
$$

This is the equation of a parabola. The constant F_{H} may be obtained by using the boundary condition $y=h$ at $x=L$. Thus,

$$
\begin{equation*}
F_{H}=\frac{w_{o} L^{2}}{2 h} \tag{5-8}
\end{equation*}
$$

Finally, substituting into Eq. 5-7 yeilds

$$
\begin{equation*}
y=\frac{h}{L^{2}} x^{2} \tag{5-9}
\end{equation*}
$$

From Eq. 5-4, the maximum tension in the cable occurs when θ is maximum; i.e., at $x=L$. Hence, from Eqs. 5-4 and 5-5,

$$
\begin{equation*}
T_{\max }=\sqrt{F_{H}^{2}+\left(w_{o} L\right)^{2}} \tag{5-10}
\end{equation*}
$$

Or, using Eq. 5-8, we can express $T_{\max }$ in terms of w_{o}, i.e.,
Instructor:Engr.Mehboob
Elahi, Dept. of Civil Engg. SCET $T_{\max }=w_{o} L \sqrt{1+(L / 2 h)^{2}}$

Example 5-2

The cable shown supports a girder which weighs $12 \mathrm{kN} / \mathrm{m}$. Determine the tension in the cable at points A, B, and C.

Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET
Wah Cantt

SOLUTION

$$
\begin{aligned}
\frac{d y_{1}}{d x_{1}} & =\tan \theta=\frac{12 x_{1}}{T_{o}} \\
y_{1} & =\int \frac{12 x_{1}}{T_{o}} d x_{1} \\
6 & =\int_{0}^{L^{\prime}} \frac{12 x_{1}}{T_{o}} d x_{1}
\end{aligned}
$$

$6=\left.\frac{12 x_{1}^{2}}{2 T_{o}}\right|_{0} ^{L}+\mathcal{C}_{1}^{0}$

$$
\begin{align*}
& 6=\frac{12 L^{\prime 2}}{2 T_{o}} \\
& T_{o}=L^{\prime 2} \tag{1}
\end{align*}
$$

Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET

$$
\begin{gathered}
\frac{d y_{2}}{d x_{2}}=\tan \theta=\frac{12 x_{2}}{T_{o}} \\
y_{2}=\int \frac{12 x_{2}}{T_{o}} d x_{2}
\end{gathered}
$$

$$
12=\int_{0}^{\left(30-L^{\prime}\right)} \frac{12 x_{2}}{T_{o}} d x_{2}
$$

$$
12=\left.\frac{12 x_{2}^{2}}{2 T_{o}}\right|_{0} ^{\left(30-L^{\prime}\right)}+C_{2}^{4}
$$

$$
1 / 2=\frac{1 / 2\left(30-L^{\prime}\right)^{2}}{2 T_{o}}
$$

$$
\begin{equation*}
1=\frac{\left(30-L^{\prime}\right)^{2}}{2 T_{o}} \tag{2}
\end{equation*}
$$

Instructor:Engr.Menbéab
Elahi,Dept. of Civil Engg. SCET

$$
\begin{equation*}
1=\frac{\left(30-L^{\prime}\right)^{2}}{2 T_{o}} \tag{2}
\end{equation*}
$$

From (1) and (2), $\quad L^{\prime}=12.43 \mathrm{~m}, \mathrm{~T}_{\mathrm{o}}=154.50 \mathrm{kN}$

$$
T_{B}=T_{o}=154.50 \mathrm{kN}
$$

$$
\begin{aligned}
T_{C} & =\sqrt{T_{o}^{2}+\left(12 L^{\prime}\right)^{2}} \\
& =\sqrt{(154.50)^{2}+(12 \times 12.43)^{2}}
\end{aligned}
$$

$$
=214.75 \mathrm{kN}
$$

Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET

Practice Problems

- Chapter 5
- Structural Analysis by R. C. Hibbeler
- Examples and Exercise

Thanky Voll

Instructor:Engr.Mehboob
Elahi,Dept. of Civil Engg. SCET

