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ANALYSIS OF INDETERMINATE
BEAMS AND FRAMES

CONTINUITY

The individual members that compose a steel or timber structure are fabricated or cut
separately and joined together by rivets, bolts, welds, or nails. Unless the joints are
specially designed for rigidity, they are too flexible to transfer moments of significant
magnitude from one member to another. In contrast, in reinforced concrete structures,
as much of the concrete as is practical is placed in one single operation. Reinforcing
steel is not terminated at the ends of a member but is extended through the joints into
adjacent members, At construction joints, special care is taken to bond the new con-
crete to the old by carefully cleaning the latter. by extending the reinforcement through
the joint, and by other means, As a result, reinforced concrete structures usually rep-
resent monolithic, or continuous, units. A load applied at one location causes defor-
mation and stress at all other locations. Even in precast concrete construction, which
resembles steel construction in that individual members are brought to the job site and
joined in the field, connections are often designed to provide for the transfer of
moment as well as shear and axial load, producing at least partial continuity.

The effect of continuity is most simply illustrated by a continuous beam, such as
shown in Fig. 12.1a. With simple spans, such as provided in many types of steel con-
struction, only the loaded member CD would deform, and all other members of the
structure would remain straight. But with continuity from one member to the next
through the support regions, as in a reinforced concrete structure, the distortion caused
by a load on one single span is seen to spread to all other spans, although the magni-
tude of deformation decreases with increasing distance from the loaded member. All
members of the six-span structure are subject to curvature, and thus also to bending
moment, as a result of loading span CD,

Similarly, for the rigid-jointed frame of Fig. 12.15, the distortion caused by a
load on the single member GH spreads to all beams and all columns, although, as
before, the effect decreases with increasing distance from the load. All members are
subject to bending moment, even though they may carry no transverse load,

If horizontal forces, such as forces caused by wind or seismic action, act on a
frame, it deforms as illustrated by Fig. 12.1¢. Here, too, all members of the frame dis-
tort, even though the forces act only on the left side: the amount of distortion is seen
to be the same for all corresponding members, regardless of their distance from the
points of loading, in contrast to the case of vertical loading. A member such as EHA,
even without a directly applied transverse load, will experience deformations and
associated bending moment.

In statically determinate structures, such as simple-span beams, the deflected
shape and the moments and shears depend only on the type and magnitude of the loads
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and the dimensions of the member. In contrast, inspection of the statically indetermi-
nate strictires in Fig, 12,1 shows that the deflection curve of any member depends
not only on the loads but also on the joint rotations, whose magnitudes in turn depend
on the distortion of adjacent. rigidly connected members, For a rigid joint such as joint
H in the frame shown in Fig. 12,16 or ¢, all the rotations at the near ends of all mem-
bers framing into that joint must be the same. For a correct design of continuous
beams and frames, it is evidently necessary to determine moments, shears, and thrusts
considering the effect of continuity at the joints.

The determination of these internal forces in continuously reinforced concrete
structures is usually based on elastic analvsis of the structure at factored loads with
methods that will be described in Sections 12.2 through 2.5, Such analysis requires
knowledge of the cross-sectional dimensions of the members. Member dimensions are
initially estimated during preliminary design, which is described in Section 12.6 along
with guidelines for establishing member proportions, For checking the results of more
exact analysis, the approximate methods of Section 12.7 are useful. For many struc-
tures, a full elastic analysis is not justified, and the ACI coefficient method of analysis
described in Section 12.8 provides an adequate basis for design moments and shears.

Before failure, reinforced concrete sections are usually capable of considerable
inelastic rotation at nearly constant moment. as was described in Section 6.9. This per-
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mits a redistribution of elastic moments and provides the basis for plastic analysis of
beams, frames, and slabs. Plastic analysis will be developed in Section 12.9 for beams
and frames and in Chapters 14 and 15 for slabs.

LoaDinG

The individual members of a structural frame must be designed for the worst combi-
nation of loads that can reasonably be expected to occur during its useful life. Internal
moments, shears, and thrusts are brought about by the combined effect of dead and
live loads. plus other loads, such as wind and earthquake, as discussed in Section 1.7.
While dead loads are constant, live loads such as floor loads from human occupancy
can be placed in various ways, some of which will result in larger effects than others.
In addition, the various combinations of factored loads specified in Table 1.2 must be
used to determine the load cases that govern member design. The subject of load
placement will be addressed first.

a. Placement of Loads

In Fig. 12.2g only span CD is loaded by live load. The distortions of the various frame
members are seen to be largest in, and immediately adjacent to, the loaded span and
to decrease rapidly with increasing distance from the load. Since bending moments are
proportional to curvatures, the moments in more remote members are correspond-
ingly smaller than those in, or close to, the loaded span. However, the loading shown
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in Fig. 12.2a does not produce the maximum possible positive moment in CD. In fact,
it additional live load were placed on span AB, this span would bend down, BC would
bend up. and CD itself would bend down in the same manner, although to a lesser
degree, as it is bent by its own load. Hence, the positive moment in CD is increased if
AB and, by the same reasoning, £F are loaded simultaneously. By expanding the same
reasoning to the other members of the frame, one can easily see that the checkerboard
pattern of live load shown in Fig. 12.2b produces the largest possible positive moments,
not only in CD, but in all loaded spans. Hence. two such checkerboard patterns are
required to obtain the maximum positive moments in all spans.

In addition to maximum span moments, it is often necessary to investigate min-
imum span moments. Dead load, acting as it does on all spans, usually produces only
positive span moments. However, live load, placed as in Fig. 12.24, and even more so
in Fig. 12.25, is seen to bend the unloaded spans upward, i.e.. to produce negative
moments in the span. If these negative live load moments are larger than the generally
positive dead load moments, a given girder, depending on load position, may be sub-
ject at one time to positive span moments and at another to negative span moments. It
must be designed to withstand both types of moments; i.e., it must be furnished with
tensile steel at both top and bottom. Thus, the loading of Fig. 12.25, in addition to giv-
ing maximum span moments in the loaded spans, gives minimum span moments in the
unloaded spans.

Maximum negative moments at the supports of the girders are obtained, on the
other hand. if loads are placed on the two spans adjacent to the particular support and
in a corresponding pattern on the more remote girders. A separate loading scheme of
this type is then required for each support for which maximum negative moments are
to be computed.

In each colummn. the largest moments oceur at the top or bottom. While the load-
ing shown in Fig, 12.2¢ results in large moments at the ends of columns CC" and DD,
the reader can easily be convinced that these moments are further augmented if addi-
tional loads are placed as shown in Fig. 12.24.

It is seen from this brief discussion that. to calculate the maximum possible
moments at all eritical points of a frame, live load must be placed in a great variety of
different schemes. In most practical cases. however, consideration of the relative mag-
nitude of effects will permit limitation of analysis to a small number of significant
cases.

Load Combinations

The ACI Code requires that structures be designed for a number of load combinations,
as discussed in Section L7, Thus, for example, factored load combinations might
include (1) dead plus live load. (2) dead plus fluid plus temperature plus live plus soil
plus snow load, and (3) three possible combinations that include dead, live, and wind
load. with some of the combinations including snow, rain, soil, and roof live load.
While each of the combinations may be considered as an individual loading condition,
experience has shown that the most efficient technique involves separate analyses for
each of the basic loads without load factors, that is. a full analysis for unfactored dead
load only, separate analyses for the various live load distributions described in Section
12.2a., and separate analyses for each of the other loads (wind. snow, etc.). Once the
separate analyses are completed. it is a simple matter to combine the results using the
appropriate load factor for each type of load. This procedure is most advantageous
because, for example. live load may require a load factor of 1.6 for one combination,
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a value of 1.0 for another, and a value of 0.5 for yet another. Once the forces have been
calculated for each combination. the combination of loads that governs for each mem-
ber can usually be identified by inspection.

SIMPLIFICATIONS IN FRAME ANALYSIS

Considering the complexity of many practical building frames and the need to account
for the possibility of alternative loadings, there is evidently a need to simplify. This
can be done by means of certain approximations that allow the determination of
moments with reasonable accuracy while substantially reducing the amount of com-
putation.

Numerous trial computations have shown that, for building frames with a rea-
sonably regular outline, not involving unusual asymmetry of loading or shape, the
influence of sidesway caused by vertical loads can be neglected. In that case. moments
due to vertical loads are determined with sufficient accuracy by dividing the entire
frame into simpler subframes. Each of these consists of one continuous beam, plus the
top and bottom columns framing into that particular beam. Placing the live loads on
the beam in the most unfavorable manner permits sufficiently accurate determination
of all beam moments, as well as the moments at the top ends of the bottom columns
and the bottom ends of the top columns. For this partial structure, the far ends of the
columns are considered fixed, except for such first-floor or basement columns where
soil and foundation conditions dictate the assumption of hinged ends. Such an approach
is explicitly permitted by ACI Code 8.9, which specifies the following for floor and
roof members:

1. The live load may be considered to be applied only to the floor or roof under consid-
eration, and the far ends of columns built integrally with the structure may be consid-
ered fixed.

2, The arrangement of live load may be limited to combinations of {a) factored dead load
on all spans with full factored live foad on two adjacent spans, and () factored dead
load on all spans with full factored lve load on aliernate spans.

When investigating the maximum negative moment at any joint, negligible error
will result if the joints second removed in each direction are considered to be com-
pletely fixed. Similarly, in determining maximum or minimum span moments, the
joints at the far ends of the adjacent spans may be considered fixed. Thus, individual
portions of a frame of many members may be investigated separately.

Figure 12.3 demonstrates the application of the ACI Code requirements for live
load on a three-span subframe. The loading in Fig. 12.3a4 results in maximum positive
moments in the exterior spans, the minimum positive moment in the center span, and
the maximum negative moments at the interior faces of the exterior columns. The
loading shown in Fig. 12.3b results in the maximum positive moment in the center
span and minimum positive moments in the exterior spans. The loading in Fig. 12.3¢
results in maximum negative moment at both faces of the interior columns. Since the
structure is symmetrical, values of moment and shear obtained for the loading shown
in Fig. 12.3¢ apply to the right side of the structure as well as the left. Due to the sim-
plicity of this structure, joints away from the spans of interest are not treated as fixed.

Moments and shears used for design are determined by combining the moment
and shear diagrams for the individual load cases to obtain the maximum values along
each span length. The resulting envelope moment and shear diagrams are shown in
Figs. 12.3d and e, respectively. The moment and shear envelopes (note the range of
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positions for points of inflection and points of zero shear) are used not only to design
the critical sections but to determine cutoff points for flexural reinforcement and
requirements for shear reinforcement.

In regard to columns, ACI Code 8.8 indicates:

1. Columns shall be designed to resist the axial forces from factored loads on all tloors
or roof and the maximum moment from factored loads on a single adjacent span of
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the floor or roof under consideration. The loading condition giving the maximum ratio
of moment to axial load shall also be considered.

2. In frames or continuous construction, consideration shall be given to the effect of
unbalanced floor or roof loads on bath exterior and interior columns and of eccentric
loading due to other cavuses.

3. In computing moments in columns due to gravity loading, the far ends of columns
built integrally with the structure may be considered fixed.

4. The resistance to moments at any floor or roof level shall be provided by distributing
the moment between columns immediately above and below the given floor in pro-
portion to the relative column stiffness and conditions of restraint.

Although it is not addressed in the ACI Code. axial loads on columns are usu-
ally determined based on the column tributary areas, which are defined based on the
midspan of Mexural members framing into each column. The axial load from the trib-
utary area is used in design, with the exception of first interior columns, which are typ-
ically designed for an extra 10 percent axial load to account for the higher shear
expected in the flexural members framing into the exterior face of first interior
columns. The use of this procedure to determine axial loads due to gravity is conser-
vative (note that the total vertical load exceeds the factored loads on the structure) and
is adequately close to the values that would be obtained from a more detailed frame
analysis.

MEeTHODS FOR ELASTIC ANALYSIS

Many methods have been developed over the years for the elastic analysis of continu-
ous beams and frames. The so-called classical methods (Ref. 12.1). such as applica-
tion of the theorem of three moments, the method of least work (Castigliano’s second
theorem), and the general method of consistent deformation, will prove useful only in
the analysis of continuous beams having few spans or of very simple frames. For the
more complicated cases generally encountered in practice. such methods prove
exceedingly tedious, and alternative approaches are preferred.

For many vears moment distribution (Ref. 12.1) provided the basic analytical
tool for the analysis of indeterminate concrete beams and frames, originally with the
aid of the slide rule and later with handheld programmable calculators. For relatively
small problems. moment distribution may still provide the most rapid results, and it is
often used in current practice. However, with the widespread availability of comput-
ers, manual methods have been replaced largely by matrix analysis, which provides
rapid solutions with a high degree of accuracy (Refs. 12.2 and 12.3).

Approximate methods of analysis, based either on careful sketches of the shape
of the deformed structure under load or on moment cocefficients, still provide a means
for rapid estimation of internal forces and moments (Ref. 12.4). Such estimates are
useful in preliminary design and in checking more exact solutions for gross errors that
might result from input errors. In structures of minor importance, approximations may
even provide the hasis for final design.

In view of the mumber of excellent texts now available that treat methods of analy-
sis (Refs. 12,1 to 12.4 to name just a few), the present discussion will be confined to an
evaluation of the usefulness of several of the more important of these, with particular ref-
ercnce to the analysis of reinforced concrete structures, Certain idealizations and approx-
imations that facilitate the solution in practical cases will be described in more detail.
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a.

Moment Distribution

In 1932, Hardy Cross developed the method of moment distribution to solve prohlems
in frame analysis that involve many unknown joint displacements and rotations. For
the next three decades, moment distribution provided the standard means in engineer-
ing offices for the analysis of indeterminate frames. Even now, it serves as the basic
analytical tool it computer facilitics are not available.

In the moment distribution method (Ref, 12.1), the fixed-end moments for each
member are modified in a serics of cycles, each converging on the precise final result,
to account for rotation and translation of the joints. The resulting series can be termi-
nated whenever one reaches the degree of accuracy required. After member end
moments are obtained. all member stress resultants can be obtained tfrom the laws of
statics,

It has been found by comparative analvses that, except in unusual cases, building-
frame moments found by modifying fixed-end moments by only two cyeles of moment
distribution will be sufficiently accurate for design purposes {Ref. 12.5).

Matrix Analysis

Use of matrix theory makes it possible to reduce the detailed numerical operations
required in the analysis of an indeterminate structure 1o systematic processes of matrix
manipulation that ¢an be performed avtomartically and rapidly by computer. Such
methods permit the rapid solution of problems involving large numbers of unknowns,
As a consequence, less reliance is placed on special techniques limited to certain types
of problems, and powerful methods of general applicability have emerged, such as the
direct stiffness methed (Refs, 12.2 and 12.3). By such means, an “exact” determina-
tion of internal forces throughout an entire building frame can be obtained quickly and
at small expense, Three-dimensional frame analysis is possible where required. A
large number of alternative loadings can be considered, including dynamic loads.

Some engineering firms prefer to write and maintain their own programs for
structural analysis particularly suited 1o their needs, However, most make use of read-
ily available programs that can be used for a broad range of problems. Input—includ-
ing loads, material properties, structural geometry, and member dimensions—is pro-
vided by the user. often in an interactive mode. Output includes joint displacements
and rotations, plus moment, shear, and thrust at eritical sections throvghout the struc-
twre. A number of programs are available. e.g.. PCA-FRAME (Portland Cement
Association, Skokie, Nlinoisy and others from numerous private firms. Most of these
programs perform analysis of two or three-dimensional framed structures subject o
static or dynamic loads, shear walls, and other elements in a small fraction of the time
formerly required, providing results to a high degree of accuracy, Generally, ordinary
desktop computers suffice,

IDEALIZATION OF THE STRUCTURE

It is seldom possible for the engineer to analyvze an actual complex redundant struc-
ture. Almost without exception, certain idealizations must be made in devising an ana-
Iytical model, so that the analvsis will be practically possible. Thus, three-dimensional
members are represented by straight lines, generally coincident with the actual cen-
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troidal axis. Supports are idealized as rollers, hinges, or rigid joints. Loads actually
distributed over a finite area are assumed to be point loads. In three-dimensional
framed structures, analysis is often limited to plane frames, each of which is assumed
to act independently.

In the idealization of reinforced concrete frames, certain questions require spe-
cial comment. The most important of these pertain to etfective span lengths, effective
moments of inertia, and conditions of support.

Effective Span Length

In elastic frame analysis, a structure is usually represented by a simple line diagram,
based dimensionally on the centerline distances between columns and between floor
beams. Actually, the depths of beams and the widths of columns (in the plane of the
frame) amount to sizable fractions of the respective lengths of these members: their
clear lengths are therefore considerably smaller than their centerline distances
between joints.

It is evident that the usual assumption in frame analysis that the members are
prismatic, with constant moment of inertia between centerlines, is not strictly correct,
A beam intersecting a column may be prismatic up to the column face, but from that
point to the column centerline it has a greatly increased depth, with a moment of iner-
tia that could be considered infinite compared with that of the remainder of the span.
A similar variation in width and moment of inertia 1s obtained for the columns. Thus,
to be strictly correct, the actual variation in member depth should be considered in the
analysis. Qualitatively, this would increase beam support moments somewhat and
decrease span moments. In addition, it is apparent that the critical section for design
for negative bending would be at the face of the support, and not at the centerline,
since for all practical purposes an unlimited effective depth is obtained in the beam
across the width of the support.

It will be observed that, in the case of the columns, the moment gradient is not
very steep. so that the difference between centerline moment and the moment at the top
or bottom face of the beam is small and can in most cases be disregarded. However, the
slope of the moment diagram for the beam is usually guite steep in the region of the
support, and there will be a substantial difference between the support centerline
moment and face moment. If the former were used in proportioning the member, an
unnecessarily large section would result. It is desirable, then, to reduce support
moments found by elastic analysis to account for the finite width of the supports.

In Fig. 12.4, the change in moment between the support centerline and the sup-
port face will be equal to the area under the shear diagram between those two points,
For knife-edge supports. this shear area is seen to be very nearly equal to Val 2.
Actually, however, the reaction is distributed in some unknown way across the width
of the support. This will have the effect of modifying the shear diagram as shown by
the dashed line; it has been proposed that the reduced area be taken as equal to VaL 3.
The fact that the reaction is distributed will modify the moment diagram as well as the
shear diagram, causing a slight rounding of the negative moment peak, as shown in
the figure, and the reduction of Val. 3 is properly applied to the moment diagram after
the peak has been rounded. This will give nearly the same face moment as would be
obtained by deducting the amount Vol 2 from the peak moment.

Another effect is present, however: the modification of the moment diagram due
to the increased moment of inertia of the beam at the column. This effect is similar to
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FIGURE 12.4
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that of a haunch, and it will mean slightly increased negative moment and slightly
decreased positive moment. For ordinary values of the ratio a, this shift in the moment
curve will be on the order of Val. 6. Thus. it is convenient simply to deduct the amount
Val- 3 from the unrounded peak moment obtained from elastic analysis. This allows
for (1) the actual rounding of the shear diagram and the negative moment peak due to
the distributed reaction and (2) the downward shift of the moment curve due to the
haunch effect at the supports. The consistent reduction in positive moment of Vol 6 is
illustrated in Fig, 12.4.

With this said, there are two other approaches that are often used by structural
designers. The first is to analyze the structure based on the simple line diagram and to
reduce the moment from the column centerline to the face of the support by Val. 2
without adjusting for the higher effective stiffness within the thickness width of the col-
umn. The moment diagram, although somewhat less realistic than represented by the
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lower curve in Fig. 12.4, still satisfies statics and requires less flexural reinforcement at
the face of the support. As a consequence, there is less congestion in the beam-column
joint location where it is often difficult to place concrete because of the high quantity
of reinforcing steel from the flexural members framing into the column (usvally from
two different directions) and from the column itself. The somewhat higher percentage
of reinforcement required at midspan usually causes little difficulty in concrete place-
ment. The second approach involves representing the portion of the “beam”™ within the
width of the column as a rigid link that connects the column centerline with the clear
span of the flexural member. The portion of the column within the depth of the beam
can also be represented using a rigid link. Such a model will produce moment diagrams
similar to the lower curve in Fig. 124, without additional analysis. The second
approach is both realistic and easy to implement in matrix analysis programs.

It should be noted that there are certain conditions of support for which no
reduction in negative moment is justified. For example, when a continuous beam is
carried by a girder of approximately the same depth. the negative moment in the beam
at the centerline of the girder should be used to design the negative reinforcing steel.

Moments of Inertia

Selection of reasonable values for moments of inertia of beams and columns for use
in the frame analysis is far from a simple matter. The design of beams and columns is
based on cracked section theory, Le., on the supposition that tension concrete is inef-
fective, It might seem. therefore, that moments of inertia to be used should be deter-
mined in the same manner, i.e., based on the cracked transformed section, in this way
accounting for the effects of cracking and presence of reinforcement. Things are not
this simple. unfortunately.

Consider first the influence of cracking. For typical members, the moment of
inertia of a cracked beam section is about one-half that of the uncracked gross concrete
section. However., the extent of cracking depends on the magnitude of the moments rel-
ative to the cracking moment. In beams, no flexural cracks would be found near the
inflection points. Columns, typically, are mostly uncracked. except for those having
relatively large eccentricity of loading. A fundamental question, too, is the load level to
consider for the analysis. Elements that are subject to cracking will have more exten-
sive cracks near ultimate load than at service load. Compression members will be unaf-
fected in this respect. Thus, the relative stiffness depends on load level.

A further complication results from the fact that the effective cross section of
beams varies along a span. In the positive bending region, a beam usually has a T sec-
tion. For typical T beams, with flange width about 4 to 6 times web width and flange
thickness from 0.2 to (L4 times the total depth, the gross moment of inertia will be
about 2 times that of the rectangular web with width b, and depth #. However, in the
negative bending region near the supports, the bottom of the section is in compression.
The T tlange is cracked, and the effective cross section is therefore rectangular,

The amount and arrangement of reinforcement are also influential. In beams, if
bottom bars are continued through the supports. as is often done, this steel acts as
compression reinforcement and stiffens the section. In columns, reinforcement ratios
are generally much higher than in beams, adding to the stiffness.

Given these complications, it is clear that some simplifications are necessary. It
is helpful to note that, in most cases, it is only the ratio of member stitfnesses that
influences the final result. not the absolute value of the stiffnesses. The stiffness ratios
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may be but little affected by different assumptions in computing moment of inertia if
there is consistency for all members.

In practice, it is generally sufficiently accurate to base stiffness calculations for
frame analysis on the gross concrete cross section of the columns. In continuous T
beams, cracking will reduce the moment of inertia to about one-half that of the
uncracked section. Thus, the effect of the flanges and the effect of cracking may nearly
cancel in the positive bending region. In the negative moment regions there are no
flanges; however, if bottom bars continue through the supports to serve as compres-
sion steel. the added stiffness tends to compensate for lack of compression flange.
Thus, for beams. generally a constant moment of inertia can be used, based on the rec-
tangular cross-sectional area b /r.

ACI Code 8.6.1 states that any set of reasonable assumptions may be used for
computing relative stiffnesses, provided that the assumptions adopted are consistent
throughout the analysis. ACI Commentary R8.6.1 notes that relative values of stiffness
are important and that two common assumptions are to use gross £l values for all
members or to use half the gross E£7 of the beam stem for beams and the gross Ef for
the columns. Additional guidance is given in ACI Code 10.11.1, which specifies the
section properties to be used for frames subject to sidesway. Thirty-five percent of the
gross moment of inertia is used for beams and 70 percent for columns. This differs
from the guidance provided in ACI Commentary 8.6.1 but, except for a factor of 0.70,
matches the guidance provided in the earlier discussion.

Conditions of Support

For purposes of analysis, many structures can be divided into a number of two-
dimensional frames. Even for such cases, however, there are situations in which it 1s
impossible to predict with accuracy what the conditions of restraint might be at the
ends of a span: yet moments are frequently affected to a considerable degree by the
choice made. In many other cases. it is necessary to recognize that structures may be
three-dimensional. The rotational restraint at a joint may be influenced or even gov-
emed by the characteristics of members framing into that joint at right angles.
Adjacent members or frames parallel to the one under primary consideration may like-
wise influence its performance.

If floor beams are cast monolithically with reinforced concrete walls (frequently
the case when first-floor beams are carried on foundation walls), the moment of iner-
tia of the wall about an axis parallel to its face may be so large that the beam end could
be considered completely fixed for all practical purposes. If the wall is relatively thin
or the beam particularly massive, the moment of inertia of each should be calculated,
that of the wall being equal to br* 12, where 1 is the wall thickness and b the wall
width tributary to one beam.

If the outer ends of concrete beams rest on masonry walls, as is sometimes the
case, an assumption of zero rotational restraint (.e.. hinged support) is probably clos-
est to the actual case.

For columns supported on relatively small footings, which in turn rest on com-
pressible soil, a hinged end is generally assumed, since such soils offer but little resis-
tance to rotation of the footing. If. on the other hand, the footings rest on solid rock,
or if a cluster of piles is used with their upper portion encased by a concrete cap, the
effect is to provide almost complete fixity for the supported column, and this should
be assumed in the analysis. Columns supported by a continuous foundation mat
should likewise be assumed fixed at their lower ends.
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If members framing into a joint in a direction perpendicular to the plane of the
frame under analysis have sufficient torsional stiffness, and if their far ends are fixed
or nearly so, their effect on joint rigidity should be included in the computations. The
torsional stiffness of a member of length L is given by the expression GJ- L, where G
is the shear modulus of elasticity of concrete (approximately to E.- 2.2} and J is the
torsional stiffness factor of the member. For beams with rectangular cross sections or
with sections made up of rectangular elements, J can be taken equal to 2(hb" 3 ~
b* 5), in which h and b are the cross-sectional dimensions of each rectangular element,
b being the lesser dimension in each case. In moment distribution, when the effect of
torsional rigidity is included. it is important that the absolute flexural stitfness 4£7- L
be used rather than relative [ L values.

A common situation in beam-and-girder floors and concrete joist floors is illus-
trated in Fig. 12.5. The sketch shows a beam-and-girder floor system in which longi-
tudinal beams are placed at the third points of each bay, supported by transverse gird-
ers, in addition to the longitudinal beams supported directly by the columns. If the
transverse girders are quite stff, it is apparent that the flexural stiffness of all beams
in the width w should be balanced against the stiffness of one set of columns in the
longitudinal bent. If, on the other hand, the girders have little torsional stiffness, there
would be ample justification for making two separate longitudinal analyses, one for
the beams supported directly by the columns, in which the rotational resistance of the
columns would be considered., and a second for the beams framing into the girders. in
which case hinged supports would be assumed. In most cases, it would be sufficiently
accurate to consider the girders stiff torsionally and to add directly the stiffness of all
beams tributary to a single column. This has the added advantage that all longitudinal
beams will have the same cross-sectional dimensions and the same reinforcing steel,
which will greatly facilitate construction. Plastic redistribution of loads upon over-
loading would generally ensure nearly equal restraint moments on all beams before
collapse as assumed in design. Torsional moments should not be neglected in design-
ing the girders.
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PrReLiMINARY DESIGN AND GUIDELINES FOR
PrROPORTIONING MEMBERS

In making an elastic analvsis of a structural framework, it is necessary to know at the
outset the cross-sectional dimensions of the members, so that moments of inertia and
stiffnesses can be calculated. Yet the determination of these same cross-sectional
dimensions is the precise purpose of the elastic analysis, In terms of load, the dead load
on a structure is often dominated by the weight of the slab. Obviously. a preliminary
cstimate of member sizes must be one of the first steps in the analysis. Subsequently,
with the results of the analysis at hand, members are proportioned, and the resuliing
dimensions compared with those previouwsly assumed. If necessary, the assumed sec-
tion properties are modified, and the analysis is repeated. Since the procedure may
hecome quite laborious, it is obviously advantageous to make the best possible origi-
nal estimate of member sizes, in the hope of avoiding repetition of the analysis.

In this connection, it is worth repeating that in the ordinary frame analysis, one
is concerned with relative stiffnesses only, not the absolute stiffnesses, If, in the orig-
inal estimate of member sizes, the stiffnesses of all beams and columns are overesti-
mated or underestimated by about the same amount, correction of these estimated
sizes after the first analvsis will have little or no effect. Consequently, no revision of
the analysis would be required. If, on the other hand, a nonuniform error in estimation
is made, and relative stiffnesses differ from assumed values by more than abour 30
percent, a new analysis should be made.

The experienced designer can estimate member sizes with surprising accuracy,
Those with little or no experience must rely on trial calculations or arbitrary rules,
maodified to suit particular situations. In building frames, the depth of one-way slabs
(discussed at greater length in Chapter 13} is often controlled by either deflection
requirements or the negative moments at the faces of the supporting beams, Minimum
depth criteria are reflected in Table 13.1, and negative momenis at the face of the sup-
port can be estimated using coefficients described in Section 12,8, A practical mini-
mum thickness of 4 in. is often used, except for joist construction meeting the reguire-
ments of ACI Code 8,11 (see Section 18.2d).

Beam sizes are vsually governed by the negative moments and the shears at the
supports, where their effective section is rectangular, Moments can be approximated
by the fixed-end moments for the particular span, or by using the ACI moment coef-
ficients {see Section 12.8), In most casecs, shears will not differ greatly from simple
beam shears. Alternatively, many designers prefer to estimate the depth of beams at
abnut% in. per foot of span, with the width equal to about one-half the depth.

For most construction, wide, relatively shallow beams and girders are preferred
to obtain minimum floor depths, and using the same depth for all flexural members
allows the use of simple, low-cost forming systems. Such designs can significantly
reduce forming costs, while incurring only small additional costs for concrete and
reinforcing steel. It is often wise to check the reinforcement ratio - based on the
assumed moments to help maintain overall economy, - = 0,012 in preliminary design
will give - = (L01 in a final design, if a more exact analysis is used, Obviously, mem-
ber dimensions are subject o modification, depending on the tvpe and magnitude of
the loads, methods of design, and material strength.

Column sizes arc governed primarily by axial loads, which can be estimated
quickly, although the presence of moments in the columns is cause for some increase
of the arca as determined by axial loads. For interior columns, in which unbalanced
moments will not be large, a 10 percent increase may be sufficient, while for exterior
columns, particularly for upper stories, an increase of 50 percent in arca may be appro-
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priate. In deciding on these estimated increases, the following factors should be con-
sidered. Moments are larger in exterior than in interior columns, since in the latter
dead load moments from adjacent spans will largely balance, in contrast to the case in
exterior columns. In addition, the influence of moments, compared with that of axial
loads, is larger in upper-floor than in lower-floor columns, because the moments are
usually of about the same magnitude, while the axial loads are larger in the latter than
in the former.

For minimum forming costs, it is highly desirable to use the same column
dimensions throughout the height of a building. This can be accomplished by using
higher-strength concrete on the lower stories (for high-rise buildings, this should be
the highest-strength concrete available) and reducing concrete strength in upper stories,
as appropriate. For columns in laterally braced frames, the preliminary design of the
lower-story columns may be based on zero eccentricity using 0.80- P, = P A total
reinforcement ratio - |, == (.02 should be used for the column with the highest axial load.
With a value of - , = 0.01 for the column with the lowest axial load on higher stories,
the column size is maintained, reducing f; when -, drops below 1 percent. Although
ACI Code 10.9.1 limits -, to a range of 1 to 8 percent, the effective minimum value of
> 15 0.005 based on ACT Code 10.8.4, which allows the minimum reinforcement to be
calculated based on a reduced effective area A, not less than one-half the total area (this
provision cannot be used in regions of high seismic risk). For columns in lateral load—
resisting frames, a subframe may be used to estimate the factored bending moments
due to lateral load on the lower-story columns. The subframe illustrated in Fig. 12.6
consists of the lower two stories in the structure, with the approprate level of fixity at
the base. The upper flexural members in the subframe are treated as rigid. Factored lat-
eral loads are applied to the structure. Judicious consideration of factors such as those
just discussed, along with simple models, as appropriate, will enable a designer to pro-
duce a reasonably accurate preliminary design, which in most cases will permit a sat-
isfactory analysis to be made on the first trial,

APPROXIMATE ANALYSIS

In spite of the development of refined methods for the analysis of bearns and frames,
increasing attention is being paid to various approximate methods of analysis (Ref.,
12.4). There are several reasons for this. Prior to performing a complete analysis of
an indeterminate structure, it is necessary to estimate the proportions of its members
to determine their relative stiffness, upon which the analysis depends. These dimen-
sions can be obtained on the basis of approximate analysis. Also, even with the avail-
ability of computers, most engineers find it desirable to make a rough check of
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results, using approximate means, to detect gross errors. Further, for structures of
minor importance, it is often satisfactory to design on the basis of results obtained by
rough calculation. For these reasons, many engineers at some stage in the design
process estimate the values of moments, shears, and thrusts at critical locations, using
approximate sketches of the structure deflected by its loads.

Provided that points of inflection (locations in members at which the bending
moment is zero and there is a reversal of curvature of the elastic curve) can be located
accurately, the stress resultants for a framed structure can usually be found on the basis
of static equilibrium alone. Each portion of the structure must be in equilibrium under
the application of its external loads and the internal stress resultants.

For the fixed-end beam in Fig. 12.7q, for example. the points of inflection under
uniformly distributed load are known to be located 0.211/ from the ends of the span.

FIGURE 12.7 w bt
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Since the moment at these points is zero, imaginary hinges can be placed there with-
out modifying the member behavior. The individual segments between hinges can be
analyzed by statics, as shown in Fig. 12,75 Starting with the center segment, shears
equal to 0.289w{ must act at the hinges, These, together with the transverse load, pro-
duce a midspan moment of .0417w/”. Proceeding next to the outer segments, a down-
ward load is applied at the hinge representing the shear from the center segment. This,
together with the applied load. produces support moments of 0.0833w/°. Note that, for
this example, since the correct position of the inflection points was known at the start,
the resulting moment diagram of Fig. 12.7¢ agrees exactly with the true moment dia-
gram for a fixed-end beam shown in Fig. [2.74. In more practical cases inflection
points must be estimated, and the results obtained will only approximate the true values.

The use of approximate analysis in determining stress resultants in frames is
illustrated by Fig. 12.8. Figure 12.8a shows the geometry and loading of a two-member
rigid frame. In Fig. 12.8h an exaggerated sketch of the probable deflected shape is



392

Milson-Darwin-Dolan:
Design of Concrete
Structures, Thirteenth
Edition

12 Analysis of Text 5 Tha Mchraw—Hilt
Indeterminate Beams and Campisnas, 2004
Frames

DESIGN OF CONCRETE STRUCTURES  Chapter 12

given, together with the estimated location of points of inflection. On this basis, the
central portion of the girder is analyzed by statics, as shown in Fig. 12,84, to obtain
girder shears at the inflection points of 7 kips. acting with an axial load P (still not
determined). Similarly, the requirements of statics applied to the outer segments of the
girder in Fig. 12.8¢ and ¢ give vertical shears of 11 and 13 kips at B and C, respec-
tively, and end moments of 18 and 30 fi-kips at the same locations. Proceeding then
to the upper segment of the column, shown in Fig. 12.8f with known axial load of
11 kips and top moment of 18 ft-kips acting, a horizontal shear of 4.5 kips at the
inflection point is required for equilibrium. Finally, static analysis of the lower part of
the column indicates a requirement of 9 ft-kips moment at A, as shown in Fig. 12.8g.
The value of P equal to 4.5 kips is obtained by summing horizontal forces at joint B.

The moment diagram resulting from approximate analysis is shown in Fig.
12.8h. For comparison. an exact analysis of the frame indicates member end moments
of 8 fi-kips at 4, 16 fi-kips at B, and 28 ft-kips at C. The results of the approximate
analysis would be satisfactory for design in many cases: if a more exact analysis is to
be made, a valuable check is available on the magnitude of results,

A specialization of the approximate method described, known as the pormal
method, is commonly used to estimate the effects of sidesway due to lateral forces act-
ing on multistory building frames. For such frames, it is usoal to assume that hori-
zontal loads are applied at the joints only, If this is true. moments in all members vary
linearly and, except in hinged members, have opposite signs close to the midpoint of
each member.

For a simple rectangular portal frame having three members, the shear forces are
the same in both legs and are each equal to half the external horizontal load. It one of
the legs is more rigid than the other, it would require a larger horizontal force to dis-
place it horizontally the same amount as the more flexible leg. Consequently. the portion
of the total shear resisted by the stiffer column is larger than that of the more flexible
column.

In multistory building frames, moments and forces in the girders and columns of
each individual story are distributed in substantially the same manner as just discussed
for single-story frames. The portal method of computing approximate moments,
shears, and axial forces from horizontal loads is, therefore, based on the following
three simple propositions:

I. The total horizontal shear in all columns of a given story is equal and opposite
to the sum of all horizontal loads acting above that story.

2. The horizontal shear is the same in both exterior columns: the horizontal shear
in each interior column is twice that in an exterior column,

3. The inflection points of all members, columns and girders, are located midway
berween joints.

Although the last of these propositions is commonly applied to all columns,
including those of the bottom floor, the authors prefer to deal with the latter separately,
depending on conditions of foundation. If the actual conditions are such as practically
to prevent rotation (foundation on rock, massive pile foundations, ete.), the inflection
points of the bottom columns are above midpoint and may be assumed to be at a dis-
tance 2hi- 3 from the bottom. If little resistance is offered to rotation, e.g., for relatively
small footings on compressible soil, the inflection point is located closer to the bottom
and may be assumed to be at a distance h- 3 from the bottom, or even lower. (With
ideal hinges, the inflection point is at the hinge, i.e., at the very bottom.) Since shears
and corresponding moments are largest in the bottom story, a judicious evaluation of
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foundation conditions as they affect the location of inflection points is of considerable
importance.

The first of the three cited propositions follows from the requirement that hori-
zontal forces be in equilibrium at any level. The second takes account of the fact that
in building frames interior columns are generally more rigid than exterior ones
because (1) the larger axial loads require a larger cross section and (2) exterior columns
are restrained from joint rotation only by one abutting girder, while interior columns
are so restrained by two such members. The third proposition is very nearly true
because, except for the top and bottom columns and, to a minor degree. for the exte-
rior girders, each member in a building frame is restrained about equally at both ends.
For this reason, members deflect under horizontal loads in an antisymmetrical man-
ner, with the inflection point at midlength.

The actual computations in this method are extremely simple. Once column
shears are determined from propositions | and 2 and inflection points located from
proposition 3, all moments, shears, and forces are simply computed by statics. The
process is illustrated in Fig. 12.9q.

Consider joints C and [ The total shear in the second story is 3 + 6 = 9 kips.
According to proposition 2, the shear in each exterior column is 9-6 = 1.5 kips, and
in each interior column 2 % 1.5 = 3.0 kips. The shears in the other floors, obtained in
the same manner, act at the hinges as shown. Consider the equilibrium of the rigid
structure between hinges a, b, and o2 the column moments, 3.0 and 9.0 ft-kips, respec-
tively, are obtained directly by multiplying the shears by their lever arms, 6 ft. The
girder moment at C, to produce equilibrium, is equal and opposite to the sum of the
column moments. The shear in the girder is obtained by recognizing that its moment
(i.e., shear times half the girder span) must be equal to the girder moment at C. Hence,
this shear is 12.0- 10 = 1.2 kips. The moment at end D is equal to that at C, since the
inflection point is at midspan. At D, column moments are computed in the same man-
ner from the known column shears and lever arms. The sum of the two girder moments,
to produce equilibrium, must be equal and opposite to the sum of the two column
moments, from which the girder moment to the right of Cis 18.0 + 6.0 — 12.0 =
12.0 ft-kips. Axial forces in the columns also follow from statics. Thus, for the rigid
body aFd, a vertical shear of 0.3 kip is seen to act upward at d. To equilibrate it, a ten-
sile force of —0.3 kip is required in the column CE. In the rigid body abc, an upward
shear of 1.2 kips at b is added to the previous upward tension of 0.3 kip at a. To equil-
ibrate these two forces, a tension force of — 1.5 kips is required in column AC. If the
equilibrium of all other partial structures between hinges is considered in a similar
manner, all moments, forces, and shears are rapidly determined.

In the present case. relatively flexible foundations were assumed, and the loca-
tion of the lowermost inflection points was estimated to be at &- 3 from the bottom. The
general character of the resulting moment distribution is shown in Fig. 12.95

AC| MomMeENT COEFFICIENTS

ACI Code 8.3 includes expressions that may be used for the approximate calculation
of maximum moments and shears in continuous beams and one-way slabs, The
expressions for moment take the form of a coefficient multiplied by w, /%, where w18
the total factored load per unit length on the span and {, is the clear span from face to
face of supports for positive moment, or the average of the two adjacent clear spans

for negative moment. Shear is taken equal to a coefficient multiplied by w,{,-2. The
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TABLE 12.1

Moment and shear values using ACI coefficients?

Positive moment

End spans
If discontinuous end is unrestrained Tw il
If discontinuous end is integral with the support Wi
Interior spans w !
Negative moment at exterior face of first interior support
Two spans Tl
More than two spans oWl
Negative moment at other faces of interior supports Tw !

Negative moment at face of all supports for (1} slabs with spans not exceeding

10 1 and (2) beams and girders where ratio of sum of column stiffness 10 beam

stiffness exceeds 8 at each end of the span Lw i}
Negative moment at interior faces of exterior supports for members built integrally

with their supports

Where the suppart is a spandrel beam or girder Hrw it

Where the support is a column W2

wl,

Shear i end members at first interior support 1.1% ;F
hi.J.II.II

Shear at all other supports

T, = todal factoned load per unit length of beam or per unit area of slah.
Ioo= clear span for positive moment and shear asd the avergoe of the Dwe adjacent clear spans for acgative
e

coefficients, found in ACI Code 8.3.3, are reprinted in Table 12,1 and summarized in
Fig. 12.10.

The ACl moment coefficients were derived by elastic analysis, considering alter-
native placement of live load to yield maximum negative or positive moments at the
critical sections, as was described in Section 12.2. They are applicable within the fol-
lowing limitations:

1. There are two or more spans.

2. Spans are approximately equal. with the longer of two adjacent spans not
greater than the shorter by more than 20 percent.

3. Loads are uniformly distributed.

4. The unit live load does not exceed 3 times the unit dead load.

5. Members are prismatic.

As discussed in Section 12.3 for more general loading conditions, the alternative
loading patterns considered in applying the Code moment coefficients result in an
envelope of maximum moments, as illustrated in Fig. 12.11 for one span of a contin-
uous frame. For maximum positive moment, that span would carry dead and live
loads, while adjacent spans would carry dead load only, producing the diagram of Fig.
12.11a. For maximum negative moment at the left support, dead and live loads would
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be placed on the given span and that to the left, while the adjacent span on the right
would carry only dead load, with the result shown in Fig. 12115 Figure 12.11c shows
the corresponding results for maximum moment at the right support.

The composite moment diagram formed from the controlling portions of those
just developed (Fig. 12.11d) provides the basis for design of the span. As observed in
Section 12.3, there is a range of positions for the points of inflection resulting from
alternate loadings. The extreme locations. required to determine bar cutoff points, can
be found with the aid of Graph A.3 of Appendix A. In the region of the inflection point,
it is evident from Fig. 12.114 that there may be a reversal of moments for alternative
load patterns. However, within the stated limits for use of the coefficients, there should
be no reversal of moments at the critical design sections near midspan or at the sup-
port faces.

Comparison of the moments found using the ACI coefficients with those calcu-
lated by more exact analysis will usually indicate that the coefficient moments are
quite conservative. Actual elastic moments may be considerably smaller. Conse-
quently, in many reinforced concrete structures, significant economy can be achieved
by making a more precise analysis, This is mandatory for beams and slabs with spans
differing by more than 20 percent, sustaining loads that are not uniformly distributed,
or carrying live loads greater than 3 times the dead load.

Because the load patterns in a continuous frame that produce critical moments
in the columns are different from those for maximum negative moments in the beams,
column moments must be found separately, According to ACI Code 8.8, columns must
be designed to resist the axial load from factored dead and live loads on all floors
above and on the roof plus the maximum moment from factored loads on a single adja-
cent span of the floor or roof under consideration. In addition. because of the charac-
teristic shape of the column strength interaction diagram (see Chapter 8). it is neces-
sary to consider the case that gives the maximum ratio of moment to axial load. In
multistory structures, this results from a checkerboard loading pattern (see Fig. 12.24),
which gives maximum column moments but at a less-than-maximum axial force. As a
simplification. in computing moments resulting from gravity loads, the far ends of the
columns may be considered fixed. The moment found at a column-beam joint for a
given loading is to be assigned to the column above and the column below in propor-
tion to the relative column stiffness and conditions of restraint.

The shears at the ends of the spans in a continuous frame are modified from the
value of w,l, 2 for a simply supported beam because of the usually unbalanced end
moments. For interior spans, within the limits of the ACI coefficient method. this
effect will seldom exceed about 8 percent. and it may be neglected. as suggested in
Table 12.1. However, for end spans, at the face of the first interior support. the addi-
tional shear is significant, and a 15 percent increase above the simple beam shear is
indicated in Table 12.1. The corresponding reduction in shear at the face of the exte-
rior support is conservatively neglected.

LinaiT ANALYSIS

a. Introduction

Muost reinforced concrete structures are designed for moments, shears, and axial forces
found by elastic theory with methods such as those described in Sections 12.1 through
12.8. On the other hand, the actual proportioning of members is done by strength
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methods, with the recognition that inelastic section and member response would result
upon overloading. Factored loads are used in the elastic analysis to find moments in a
continuous beam. for example, after which the critical beam sections are designed
with the knowledge that the steel would be well into the vield range and the concrete
stress distribution very nonlinear before final collapse. Clearly this is an inconsistent
approach to the total analysis-design process, although it can be shown to be both safe
and conservative. A beam or frame so analyzed and designed will not fail at a load
lower than the value caleulated in this way.'

On the other hand, it is known that a continuous beam or frame normally will
not fail when the nominal moment capacity of just one critical section is reached. A
plastic hinge will form at that section, permitting large rotation to occur at essentially
constant resisting moment and thus transferring load to other locations along the span
where the limiting resistance has not yet been reached. Normally in a continuous beam
or frame, excess capacity will exist at those other locations because they would have
been reinforced for moments resulting from different load distributions selected to
produce maximum moments at those other locations.

As loading is further increased, additional plastic hinges may form at other loca-
tions along the span and eventually result in collapse of the structure. but only after a
significant redistribution of moments has occurred. The ratio of negative to positive
moments found from elastic analysis is no longer correct, for example, and the true
ratio after redistribution depends upon the flexural strengths actually provided at the
hinging sections.

Recognition of redistribution of moments can be important because it permits a
more realistic appraisal of the actual load-carrying capacity of a structure, thus lead-
ing to improved economy. In addition, it permits the designer to modify, within lim-
its, the moment diagrams for which members are to be designed. Certain sections can
be deliberately underreinforced if moment resistance at adjacent critical sections is
increased correspondingly. Adjustment of design moments in this way enables the
designer to reduce the congestion of reinforcement that often oceurs in high-moment
areas. such as at the beam-column joints.

The formation of plastic hinges is well established by tests such as that pictured
in Fig. 12.12. The three-span continuous beam illustrates the inelastic response typi-
cal of heavily overloaded members. It was reinforced in such a way that plastic hinges
would form at the interior support sections before the limit capacity of sections else-
where was reached. The beam continued to carry increasing load well bevond the load
that produced first yielding at the supports. The extreme deflections and sharp changes
in slope of the member axis that are seen here were obtained only slightly before final
collapse.

The inconsistency of the present approach to the total analysis-design process,
the possibility of using the reserve strength of concrete structures resulting from moment
redistribution, and the opportunity to redice steel congestion in critical regions have
motivated considerable interest in limit analysis for reinforced concrete based on the
concepts just described. For beams and frames, ACI Code 8.4 permits limited redis-
tribution of moments, depending upon the strain in the tensile steel - . For slabs, which
generally use very low reinforcement ratios and consequently have great ductility,
plastic design methods are especially suitable.

P 8ee the discussion of upper and lower bound theorems of the theory of plasticity, Secton 14.2, Tor an elabortion on this poinl.
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FIGURE 12.12
Three-span continuons beam
after the formation of plastic
hinges at the interior
SUpports,

Plastic Hinges and Collapse Mechanisms

If a short segment of a reinforced concrete beam is subjected 1o a bending moment,
curvature of the beam axis will result, and there will be a corresponding rotation of
one face of the segment with respect to the other. It is convenient o express this in
terms of an angular change per unit length of the member. The relation between
moment and angle change per unit length of beam, or curvature, at a reinforeed con-
crete beam section subject to wensile cracking was developed in Section 6.9, Methods
were presented there by which the theoretical moment-curvature graph might be
drawn for a given beam cross section, as in Fig. 6,16,

The acwal moment-curvature relationship measured in beam tests differs some-
what from that shown in Fig. 6,16, mainly because, from tests, curvatures are calcu-
lated from average strains measured over a finite gage length, usually about equal o
the effective depth of the beam. In particular, the sharp increase in curvature upon con-
crete cracking shown in Fig. 6.16 is not often seen because the crack occurs at only
one discrete location along the gage length, Elsewhere, the uncracked concrete shares
in resisting flexural wension, resulting in what is known as rension sifffening. This tends
to reduce curvature. Furthermaore, the exact shape of the moment-curvature relation
depends strongly upon the reinforcement ratio as well as upon the exact stress-strain
curves for the conerete and steel,

Figure 12.13 shows a somewhart simplified moment-curvature diagram for an
actual concrete beam section having a wensile reinforcement ratio equal to about one-
half the balanced value. The diagram is lincar up to the cracking moment M, after
which a nearly straight line of somewhat flatter slope is obtained. At the moment
that initiates yielding M., the curvature starts to increase disproportionately. Further
increase in applied moment causes extensive inelastic rotation until, eventually. the
compressive strain limit of the concrete is reached at the ultimate rotation - . The
maximum moment is often somewhat above the calculated flexural strength M, due
largely to strain hardening of the reinforcement.
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FIGURE 12.13

Plastic hinge characteristics
in a reinforced concrete
member: (6] typical moment-
curvature diagram: ($) strains
and stresses at start of
yielding: (¢} strains and
stresses at incipient failure,
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The effect of inelastic concrete response prior to steel yielding is small for typ-
ically underreinforced sections, as is indicated in Fig. 6.16, and the yield moment can
be calculated based on the elastic concrete stress distribution shown in Fig, 12,136

kd
M, =Af, d~- 3 (12.1)
where &d is the distance from the compression face to the cracked elastic neutral axis
(see Section 3.3b). The nominal moment capacity M. based on Fig. 12.13¢, is calcu-
lated by the usual expression

M, =Afd—s =Af d—— (12.2)
: 2 : 2
For purposes of limit analysis, the M — - curve is usually idealized, as shown

by the dashed line in Fig. 12.13a. The slope of the elastic portion of the curve is
obtained with satisfactory accuracy using the moment of inertia of the cracked trans-
formed section. After the nominal moment M, is reached, continued plastic rotation is
assumed to occur with no change in applied moment. The elastic curve of the beam
will show an abrupt change in slope at such a section. The beam behaves as if there
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were a hinge at that point. However, the hinge will not be “friction-free.” but will have
a constant resistance to rotation.

If such a plastic hinge forms in a determinate structure, as shown in Fig. 12,14,
uncontrolled deflection takes place, and the structure will collapse. The resulting sys-
tem is referred to as a mechanism, an analogy to linkage systems in mechanics.
Generalizing., one can say that a statically determinate system requires the formation
of only one plastic hinge to become a mechanism.

This is not so for indeterminate structures. In this case, stability may be main-
tained even though hinges have formed at several cross sections. The formation of
such hinges in indeterminate structures permits a redistribution of moments within the
beam or frame. It will be assumed for simplicity that the indeterminate beam of Fig.
12.15a 15 symmetrically reinforced, so that the negative bending capacity is the same
as the positive. Let the load P be increased gradually until the elastic moment at the
fixed support, 75PL, is just equal to the plastic moment capacity of the section M. This
load is
p=p, =2t 5330
=Pa=5 T (a)
At this load, the positive moment under the load is 53PL, as shown in Fig. 12.15b. The
beam still responds elastically everywhere but at the left support. At that point the
actual fixed support can be replaced for purposes of analysis with a plastic hinge offer-
ing a known resisting moment M. Because a redundant reaction has been replaced by
a known moment, the beam is now determinate.

The load can be increased further until the moment under the load also becomes
equal to M, at which load the second hinge forms. The structure is converted into a
mechanism, as shown in Fig. 12.15¢, and collapse occurs. The moment diagram at col-
lapse load is shown in Fig. 12154

The magnitude of load causing collapse is casily calculated from the geometry
of Fig. 12.15d:

M, PL
M5 =7
from which
N _ oM,
P - P]; - L l['h}

By comparison of Egs. (b) and (a). it is evident that an increase in P of 12.5 percent
is possible, beyond the load that caused the formation of the first plastic hinge, before
the beam will actually collapse. Due to the formation of plastic hinges, a redistribu-
tion of moments has occurred such that, at failure, the ratio between the positive
moment and negative moment is equal to that assumed in reinforcing the structure.
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FIGURE 12.15 P
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c. Rotation Requirement

It may be evident that there is a direct relation between the amount of redistribution
desired and the amount of inelastic rotation at the critical sections of a beam required
to produce the desired redistribution. In general, the greater the modification of the
clastic-moment ratio, the greater the required rotation capacity to accomplish that
change. To illustrate, if the beam of Fig. 12,154 had been reinforced according 1o the
clastic-moment diagram of Fig. 12,13k, no inelastic-rotation capacity at all would be
required. The beam would, art least in theory, yield simultaneously at the left support
and at midspan. On the other hand, if the reinforcement at the left support had been
deliberately reduced (and the midspan reinforcement correspondingly increased),
inelastic rotation at the support would be required before the strength at midspan could
be realized.

The amount of rotation required at plastic hinges for any assumed moment dia-
gram can be found by considering the requirements of compatibility. The member
must be bent, under the combined effects of elastic moment and plastic hinges, so that
the correct boundary conditions are satisfied at the supports. Usually, zero support
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FIGURE 12.16 0.4/
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deflection is to be maintained. Moment-area and conjugate-beam principles are useful
in quantitative determination of rotation requirements (Ref. 12.6). In deflection calcu-
lations, it 1 convenient to assume that plastic hinging oceurs at a point, rather than
being distributed over a finite hinging length, as is actually the case. Consequently, in
loading the conjugate beam with unit rotations. plastic hinges are represented as con-
centrated loads.

Calculation of rotation requirements will be illustrated by the two-span continuous
beam shown in Fig. 12.16a. The elastic-moment diagram resulting from a single con-
centrated load is shown in Fig. 12,16/ The moment at support B 1s 0.096P], while that
under the load is 01821 If the deflection of the beam at support C were calculated
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using the vnit rotations equal to M- EJ, based on this elastic-moment diagram, a zero
result would be obtained.

Figure 12.16c¢ shows an alternative, statically admissible moment diagram that
was obtained by arbitrarily increasing the support moment from 0.096P7 o 0. 15021,
If the beam deflection at C were caleulated vsing this moment diagram as a basis, a
nonzero value would be obtained. This indicates the necessity for inelastic rotation at
one of more points to maintain geometric compatibility at the right support.

If the beam were reinforced according to Fig. 12.16c, increasing loads would
produce the first plastic hinge at D, where the beam has been deliberately made under-
strength. Continued loading would eventually result in formation of the second plas-
tic hinge at B, creating a mechanism and leading to collapse of the structure.

Limit analysis requires calculation of rotation at all plastic hinges up to, but not
including, the last hinge that wiggers actual collapse. Figure 12,164 shows the M- ET
load to be imposed on the conjugate beam of Fig. 12.16¢, Also shown is the concen-
trated angle change - ;. which is to be evaluated. Starting with the left span, taking
moments of the M- EJ loads about the internal hinge of the conjugate beam at B, one
obtains the left reaction of the conjugate beam (equal to the slope of the real beam):

Pl
o= ), 25_
.= 0.0 I,

With that reaction known, moments are taken about the support C of the conjugate
beam and set equal to zero to obtain

2

P
EI

This represents the necessary discontinuity in the slope of the elastic curve shown in
Fig. 12.16f 10 restore the beam o zero deflection at the right support, The beam must
he capable of developing ar least that amount of plastic rotation if the modified
moment diagram assumed in Fig. 12.16¢ is to be valid.

-, = 0.060

Rotation Capacity

The capacity of concrete structures to absorb inelastic rotations at plastic-hinge loca-
tions is not unlimited. The designer adopting full limit analysis in concrete must cal-
culate not only the amount of rotation required at critical sections to achieve the
assumed degree of moment redistribution but also the rotation capacity of the mem-
bers at those sections to ensure that it is adequate.

Curvature at initiation of yielding is easily calculated from the elastic strain dis-
tribution shown in Fig. 12.13h,

€,

D R (12.3)

in which the ratio & establishing the depth of the elastic neutral axis is found from Eq.
(3.12). The curvature corresponding to the nominal moment can be obtained from the
geometry of Fig. 12.13¢;

. Een
o

(12.4)

Although it is customary in flexural strength analysis to adopt - = 0.003, for pur-
poses of limit analysis a more refined value is needed. Extensive experimental studies
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(Refs. 12.7 and 12.8) indicate that the ultimate strain capacity of concrete is strongly
influenced by the beam width b, by the moment gradient, and by the presence of addi-
tional reinforcement in the form of compression steel and confining steel (i.e., web
reinforcement). The last parameter is conveniently introduced by means of a rein-
forcement ratio - ", defined as the ratio of the volume of one stirrup plus its tributary
compressive steel volume to the concrete volume tributary to one stirrup. On the basis
of empirical studies. the ultimate flexural strain at a plastic hinge is
Cf 2

b
= 0003 + 0022 + . —L 12.5
Sox 145 (125)

where z is the distance between points of maximum and zero moment. Based on Eqgs.
(1233 to (12.5), the inelastic curvature for the idealized relation shown in Fig. 12.13a is
M

P w T 'TM’T {IZE}}

This plastic rotation is not confined to one cross section but is distributed over a finite
length referred to as the hinging fength. The experimental studies upon which Eq.
(12.5) 15 based measured strains and rotations in a length equal to the effective depth
d of the test members. Consequently. -, is an average value of ultimate strain over a
finite length, and - . given by Eq. (12.6), is an average value of curvature. The total
inela&tic rotation -, can be found by multiplying the average curvature by the hinging
ength:

(12,7}

On the basis of current evidence, it appears that the hinging length [, in support
regions, on either side of the support, can be approximated by the expression

I, = 0.5d + 0.052 (12.8)

in which z is the distance from the point of maximum moment to the nearest point of
ZETO MOmMent,

Moment Redistribution under the ACI Code

Full use of the plastic capacity of reinforced concrete beams and frames requires an
extensive analysis of all possible mechanisms and an investigation of rotation require-
ments and capacities at all proposed hinge locations. The increase in design time may
not be justified by the gains obtained. On the other hand, a restricted amount of redis-
tribution of elastic moments can safely be made without complete analysis, yet may
be sufficient to obtain most of the advantages of limit analysis.

A limited amount of redistribution is permitted by ACI Code 8.4, depending
upon a rough measure of available ductility, without explicit calculation of rotation
requirements and capacities. The net tensile strain in the extreme tension steel at nom-
inal strength -, given in Eq. (3.29). is used as an indicator of rotation capacity.
Accordingly, ACI Code 8.4 provides as follows:

Except where approximate values for moments are used, the negative moments calcu-
lated by elastic theory at the supports of continuous flexural members for any assumed
loading arrangement may he increased or decreased by nol more than 1000- |, percent, with
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FIGURE 12.17
Allowable moment
redistribution under the
ACT Code.
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a maximum of 20 percent. These modified negative moments shall be used for caleula-
tion of the moments at sections within the spans. Such an adjustment shall be made only
when - | is equal to or greater than 0.0075 at the section at which the moment is reduced.

Redistribution for values of -, << L0075 is conservatively prohibited. The ACI Code
provisions are shown graphically in Fig. 12.17. The value of - corresponding to a given
value of -, and thus a given percentage change in moment, can be calculated using
Eq. (3.30a) from Section 3.44d.

To demonstrate the advantage of moment redistribution when alternative loadings
are involved, consider the concrete beam of Fig. 12.18. A three-span continuous beam
is shown, with dead load of 1 kip/ft and live load of 2 kips/ft. To obtain maximum
moments at all critical design sections, il is necessary (o consider three alternative load-
ings. Case a, with live and dead load over exterior spans and dead load only over the
interior span, will produce the maximum positive moment in the exterior spans. Case
b, with dead load on exterior spans and dead and live load on the interior span, will pro-
duce the maximum positive moment in the interior span. The maximum negative
moment over the interior support is obtained by placing dead and live load on the two
adjacent spans and dead load only on the far exterior span, as shown in case .

It will be assumed for simplicity that a 20 percent adjustment of support
moments is permitted throughout, provided span moments are modified accordingly.
An overall reduction in design moments through the entire three-span beam may be
possible. Case g, for example. produces an elastic maximum span moment in the exte-
rior spans of 109 fi-kips. Corresponding to this is an elastic negative moment of 82 ft-
kips at the interior support. Adjusting the support moment upward by 20 percent, one
obrains a negative moment of 98 fi-kips, which results in a downward adjustment of
the span moment to 101 ft-kips.

Now consider case b By a similar redistribution of moments, a reduced middle-
span moment of 537 ft-kips is obtained through an increase of the support moment from
78 to 93 fi-kips.

The moment obtained at the first interior support for loading case ¢ can be
adjusted in the reverse direction: i.e.. the support moment is decreased by 20 percent
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to 107 fi-kips. To avoid increasing the controlling span moment of the interior span,
the right interior support moment is adjusted upward by 20 percent to B0 ft-kips. The
positive moments in the left exterior span and in the interior span corresponding to
these modified support moments are 96 and 56 fi-kips. respectively.

It will be observed that the reduction obtained for the span moments in cases o
and b were achieved at the expense of increasing the moment at the first interior sup-
port. However, the increased support moment in each case was less than the moment
for which that support would have to be designed based on the loading ¢, which pro-
duced the maximum support moment. Similarly, the reduction in support moment in
case ¢ was taken at the expense of an increase in span moments in the two adjacent
spans. However, in each case the increased span moments were less than the maximum
span moments obtained for other loading conditions. The final design moments at all
critical sections are underlined in Fig. 12.18. It can be seen, then, that the net result is
a reduction in design moments over the entire beam. This modification of moments
does not mean a reduction in safety factor below that implied in code safety provisions;
rather, it means a reduction of the excess strength that would otherwise be present in
the structure because of the actual redistribution of moments that would oceur before
failure. It reflects the fact that the maximum design moments are obtained from alter-
native load patterns, which could not exist concurrently, The end result is a more real-
istic appraisal of the actual collapse load of the indeterminate structure.

CONCLUSION

The problems associated with analysis of reinforced concrete structures are many. The
engineer must not only accept the uncertainties of load placement. magnitude, and
duration typical of any structural analysis, but must also cope with other complications
that are unique to reinforced concrete. These are mainly associated with estimation of
moment of inertia of the reinforced concrete sections and with the influence of con-
crete creep. They may be summarized briefly as follows: (1) effective moments of
inertia change depending on the sign of the bending moment, (2) moments of inertia
depend not only on the effective concrete section, but also on the steel. a part of which
may be discontinuous, (3) moments of inertia depend on cracking. which is both
location-dependent and load-dependent, and (4) the concrete is subject to creep under
sustained loads, reducing its effective modulus. In addition, joint restraints and condi-
tions of support for complex structures are seldom completely in accordance with the
idealization. The student may well despair of accurate calculation of the internal
forces for which the members of a reinforced concrete frame must be designed.

It may be reassuring to know that reinforced concrete has a remarkable capacity
to adapt to the assumptions of the designer. This has been pointed out by a number of
outstanding engineers. Luigi Nervi, the renowned Italian architect-engineer, has stated
it eloquently as follows:

Mainly because of plastic flow, a concrete structure tries with admirable docility to adapt
itself to our caleulations—which do not always represent the most logical and sponta-
neous answer 1o the request of the forces at play—and even tries o correct our deficien-
cies and errors. Sections and regions oo highly stressed yield and channel some of their
loads to other sections or regions, which accept this additional task with commendable
spirit of collaboration, within the limits of their own strength.’

TR L. Nervi, Strictres, FW. Dodge Corp., New York, 1956,
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Hardy Cross, best known for his development of the moment distribution method of
analysis (see Section 12.4), noted the beneficial effects of concrete creep, by which a
structure can adapt to support settlements, which, on the basis of elastic analysis,
cause forces and movements sufficient to fail the structure. Halvard Birkeland. one of
the pioneers in the development of prestressed concrete in the United States, referred
to the “wisdom of the structure.” noting that ™. . . the structure, in many instances, will
accept our rash assumptions and our imperfect mathematical models . . . the structure
will exhaust all means of standing before it decides to fall.™

Thus it may be of some comfort to know that a reinforced concrete structure will
tend to act ay the engineer has assumed it will act. Reasonable assumptions in the
analysis may safely be made. But corollary to this important principle is the accep-
tance of its limits: the general partern of forces and moments must be recognized, and
at teast one reasonable load path provided. Too great a deviation from the actual dis-
tribution of internal forces can result in serviceability problems associated with crack-
ing and deflection, and can even result in premature failure, It is for this reason that
methods of limit analysis for reinforced conerete include restrictions on the amount of
redistribution of elastic moments (see Section 12.9). But it is reassuring to know that,
it good judgment is used in assigning internal forces to critical sections, the wisdom
of the structure will prevail.
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PROBLEMS

12.1. Complete the preliminary design of the four-story heavy storage facility shown
in Fig. P12.1. The floor live load is 250 psf, the roof live load is 12 psf, and
the dead load on all floors and the roof consists of the structure self-weight
plus 10 pst for utilities, The building is enclosed in a self-supporting curtain
wall that also carries the lateral load on the structure. Beams are spaced at
12 fi: girders are spaced at 27 ft. The minimum clear space between floors is
11 ft. and the floor depth should not exceed 30 in. The column eross sections
should be maintained from floor to floor. Use f, = 60.000 psi and ) =
4000 psi for the floors. Concrete with £ up to 8000 psi is available for the
columns, The preliminary design should include the initial dimensions of the
structural slab, beams, girders, and columns for a typical floor.

"H. L. Birkeland, “The Wisdom of the Strociuee,” J. ACE Aprl 1978, pp. 105-111.
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FIGURE P12.1
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12.2, A concrete beam with b = 12 in.. h = 26.5 in,, and d = 24 in., having a span

12.3.

of 24 ft, can be considered fully fixed at the left support and supported verti-
cally but with no rotational restraint {e.g., roller) at the right end. It is rein-
forced for positive bending with a combination of bars giving A, = 2.45 in°,
and for negative bending at the left support with A, = 2.88 in’. Positive bars
are carried 6 in. into the face of the left support, according to the ACI Code
requirements, but lack the embedded length to be considered effective as com-
pression steel. No. 3 (No. 10) closed hoop stirrups are provided at 9 in. spac-
ing over the full span. The factored load consists of a single concentrated force
of 63.3 kips at midspan. Self-weight of the beam may be neglected in the cal-
culations. Calculate the rotation requirement at the first plastic hinge to form
{a) if the beam is reinforced according to the description above, (#) if, to
reduce bar congestion at the left support, that steel area is reduced by 12.5 per-
cent, with an appropriate increase in the positive steel area, and () if the steel
area at the left support is reduced by 25 percent, compared with the original
description, with an appropriate increase in the positive steel area. Also caleu-
late the rotation capacity of the critical section, for comparison with the
requirements of (a), (b), and (). Comment on yvour results and compare with
the approach to moment redistribution presented in the ACI Code. Material
strengths are £, = 60 ksi and ! = 4 ksi.

A 12-span continuous reinforced concrete T beam is to carry a caleulated dead

load of 900 Ib/ft including self-weight, plus a service live load of 1400 Ib/ft on

uniform spans measuring 26.5 ft between centers of supporting columns (25 fi
clear spans). The slab thickness is 6 in.. and the effective flange width is 75 in.

Web proportions are b, = (L6d, and the maximum reinforcement ratio will he

set at 0.011. All columns will be 18 in. square. Material strengths are f =

4004} psi and f, = 60,000 psi.

{a) Find the factored moments for the exterior and first interior span based on
the ACI Code moment coefficients of Table 12.1.

(£ Find the factored moments in the exterior and first interior span by elas-
tic frame analysis, assuming the floor-to-floor height to be 10 ft. Note
that alternative live loadings should be considered (see Section 12.2a)
and that moments can be reduced to account for the support width (see
Section 12.5a). Compare your results with those obtained using the ACI
moment coefficients,
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12.4.

() Adjust the factored negative and positive moments, taking advantage of
the redistribution provisions of the ACI Code. Assume that a 10 percent
minimum redistribution is possible.

(e} Design the exterior and first interior spans for flexure and shear, finding
concrete dimensions and bar requirements, basing your design on the
assumptions and modified moments in part (c).

A continuous reinforced concrete frame consists of a two-span rectangular beam
ABC, with center-to-center spans AB and BC of 24 ft. Columns measuring 14 in.
square are provided at 4, B, and C. The columns may be considered fully fixed
at the floors above and below for purposes of analysis. The beam will carry a ser-
vice live load of 1200 Ib/ft and a calculated dead load of 1000 Ib/t, including
self-weight. Floor-to-floor height is 12 ft. Material strengths are £, = 60,000 psi
and f! = 4000 psi. '

{a) Carry out an elastic analysis of the two-span frame. considering alternate
live loadings to maximize the bending moment at all crifical sections,
Design the beams. using a maximum reinforcement ratio of 0.012 and J
= 2b. Find the required concrete section and required steel areas at posi-
tive and negative bending sections. Select the reinforcement. Cutoff points
can be determined according to Fig. 5.15a. Note that negative design
moments are at the face of supports. not support centerlines.

(h) Take maximum advantage of the redistribution provisions of ACI Code 8.4
(see Section 12.9¢) to reduce design moments at all critical sections, and
redesign the steel for the beams, Keep the concrete section unchanged.
Select reinforcement and determine cutoff points.

() Comment on your two designs with regard to the amount of steel required
and the possible congestion of steel at the critical bending sections. You
may assume that the shear reinforcement is unchanged in the redesigned
beam.



