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STRIP METHOD FOR SLABS

INTRODUCTION

In Section 14.2, the upper and lower bound theorems of the theory of plasticity were
presented. and it was pointed out that the yield line method of slab analysis was an
upper bound approach to determining the flexural strength of slabs. An upper bound
analysis, if in error, will be so on the unsafe side. The actual carrying capacity will be
less than, or at best equal to, the capacity predicted. which is certainly a cause for con-
cern in design. Also. when applying the yield line method, it is necessary to assume
that the distribution of reinforcement is known over the whole slab. It follows that the
vield line approach is a tool to analvze the capacity of a given slab and can be used for
design omly in an iterative sense, for calculating the capacities of trial designs with
varying reinforcement until a satisfactory arrangement is found,

These circumstances motivated Hillerborg to develop what is known as the strip
method for slab design., his first results being published in Swedish in 1956 (Ref.
15.1). In comtrast to yield line analysis, the strip method is a lower bound approach,
based on satisfaction of equilibrium requirements everywhere in the slab. By the strip
method (sometimes referred to as the equilibrium theory), a moment field is first
determined that fulfills equilibrium requirements, after which the reinforcement in the
slab at each point is designed for this moment field. If a distribution of moments can
be found that satisfies both equilibrium and boundary conditions for a given external
loading, and if the yield moment capacity of the slab is nowhere exceeded, then the
given external loading will represent a lower bound of the true carrying capacity.

The strip method gives results on the safe side, which is certainly preferable in
practice, and differences from the true carrying capacity will never impair safety. The
strip method is a design method. by which the needed reinforcement can be calculated.
It encourages the designer to vary the reinforcement in a logical way, leading to an
economical arrangement of steel, as well as a safe design. 1t is generally simple to use,
even for slabs with holes or irregular boundaries.

In his original work in 1956, Hillerborg set forth the basic principles for edge-
supported slabs and introduced the expression “strip method™ (Ref. 15.1). He later
expanded the method to include the practical design of slabs on columns and L-shaped
slabs (Refs. 15.2 and 15.3). The first treatment of the subject in English was by Crawford
(Ref. 15.4). In 1964, Blakey translated the earlier Hillerborg work into English (Ref.
15.5). Important contributions, particularly regarding continuity conditions, have been
made by Kemp (Refs. 15.6 and 15.7) and Wood and Armer (Refs, 15.8, 15.9, and 15.10),
Load tests of slabs designed by the strip method were carried out by Armer (Ref. 15.11)
and confirmed that the method produces safe and satisfactory designs. In 1975,
Hillerborg produced Ref, 15.12 “for the practical designer, helping him in the simplest
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possible way to produce safe designs for most of the slabs that he will meet in practice,
including slabs that are irregular in plan or that carry unevenly distributed loads.”
Subsequently. he published a paper in which he summarized what has become known as
the “advanced strip method.” pertaining to the design of slabs supported on columns,
reentrant corners, or interior walls (Ref. 15.13). Useful summaries of both the simple
and advanced strip methods will be found in Refs, 15.14 and 15.15.

The strip method is appealing not only because it is safe, economical, and ver-
satile over a broad range of applications, but also because it formalizes procedures fol-
lowed instinctively by competent designers in placing reinforcement in the best possi-
ble position. In contrast with the yvield line method, which provides no inducement to
vary bar spacing, the strip method encourages the use of strong bands of steel where
needed, such as around openings or over columns, improving economy and reducing
the likelihood of excessive cracking or large deflections under service loading,

Basic PrRINCIPLES

The governing equilibrium equation for a small slab element having sides dy and dv is

2 “m m
I Tty Ty

=4 — =2 = — (15.1)
._r_ .-}I_ x}'

where w = external load per unit area
. m, = bending moments per unit width in X and } directions, respectively
m,, = twisting moment (Ref, 15.16).

il

According to the lower bound theorem, any combination of m,, m,, and m,, that satis-
fies the equilibrium equation at all points in the slab and that meets boundary condi-
tions is a valid solution, provided that the reinforcement is placed to carry these
maoments.

The basiz for the simple strip method is that the torsional moment is chosen
equal 10 zero; no load is assumed to be resisted by the twisting strength of the slab.
Therefore. if the reinforcement is parallel 1o the axes in a rectilinear coordinate system,

my, =0

The equilibrium equation then reduces o
2 2
. "m . S THE L
_’.u + 1.‘ E—— {15‘2}
- _r" - }I'

This equation can be split conveniently into two parts, representing twistless beam
strip action,

; = = kw {15.3a)

and

v

- '552

= -] - kw {15.3b)

where the proportion of foad taken by the strips is k in the X direction and (1 — &) in the
Y direction, In many regions in slabs, the value of & will be either O or |, With k = 0, all
of the load is dispersed by strips in the ¥ direction; with £ = 1, all of the load is carried
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FIGURE 15.1
Square slab with load shared

equally in two directions.

in the X direction. In other regions. it may be reasonable to assume that the load is
divided equally in the two directions (i.e.. & = 0.5).

CHolice oF Loap DISTRIBUTION

Theoretically. the load w can be divided arbitrarily between the X and Y directions.
Different divisions will, of course, lead to different patterns of reinforcement, and all
will not be equally appropriate. The desired goal is to arrive at an arrangement of steel
that is safe and economical and that will avoid problems at the service load level asso-
ciated with excessive cracking or deflections. In general, the designer may be guided
by knowledge of the general distribution of elastic moments.

To see an example of the strip method and to illustrate the choices open to the
designer, consider the square, simply supported slab shown in Fig. 15.1, with side
length @ and a uniformly distributed factored load w per unit area.

The simplest load distribution is obtained by setting & = 0.5 over the entire slab,
as shown in Fig. 15.1. The load on all strips in each direction is then w- 2, as illustrated
by the load dispersion arrows of Fig. 15.1a. This gives maximum moments
wa’

16

over the whole slab, as shown in Fig. 15.1¢, with a uniform lateral distribution across
the width of the critical section, as in Fig. 15.14.

M, = My = (15.4)
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Square slab with load
dispersion lines following
diagonals.
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This would not represent an economical or serviceable solution because it is rec-
ognized that curvatures, hence moments, must be greater in the strips near the middle
of the slab than near the edges in the direction parallel to the edge (see Fig. 13.5). If
the slab were reinforced according to this solution, extensive redistnibution of
moments would be required, certainly accompanied by much cracking in the highly
stressed regions near the middle of the slab.

An alternative, more reasonable distribution is shown in Fig. 15.2. Here the
regions of different load dispersion, separated by the dash-dotted “discontinuity lines,”
follow the diagonals, and all of the load on any region is carried in the direction giv-
ing the shortest distance to the nearest support. The solution proceeds, giving & values
of either 0 or 1. depending on the region, with load transmitted in the directions indi-
cated by the arrows of Fig. 15.2a. For a strip A-A at a distance v = g 2 from the X axis,
the moment is

m, =— (15.5)

The load acting on a strip A-A is shown in Fig. 15.2h, and the resulting diagram of
moment m, is given in Fig. 15.2¢, The lateral variation of m, across the width of the
slab is as shown in Fig. 15.2d.

The lateral distribution of moments shown in Fig. 13.2d would theoretically
require a continuously variable bar spacing. obviously an impracticality. One way of
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FIGURE 15.3

Square slab with load near
diagonals shared equally in
two directions,
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using the distribution in Fig. 15.2, which is considerably more economical than that in
Fig. 15.1, would be to reinforce for the average moment over a certain width. approx-
imating the actual lateral variation shown in Fig. 15.24 in a stepwise manner. Hiller-
borg notes that this is not strictly in accordance with the equilibrium theory and that
the design is no longer certainly on the safe side, but other conservative assumptions,
g.g., neglect of membrane strength in the slab and neglect of strain hardening of the
reinforcement, would surely compensate for the slight reduction in safety margin.

A third alternative distribution is shown in Fig. 15.3. Here the division is made
s0 that the load is carried to the nearest support, as before, but load near the diagonals
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has been divided. with one-half taken in each direction. Thus. & is given values of 0 or
1 along the middle edges and a value of (1.5 in the comers and center of the slab, with
load dispersion in the directions indicated by the arrows shown in Fig. 15.3q. Two dif-
ferent strip loadings are now identified. For an X direction strip along section A-A, the
maximum moment is

2
W o o Wil
=_—X—-—X_-=— | 5.6¢
TR ETR T e (160
and for a strip along section B-B, the maximum moment is
a_a w_a_ 3a Swa
=X —X—o+ XX —= 15.66
VTR T e (12:65)

This design leads to a practical arrangement of reinforcement, one with constant spac-
ing through the center strip of width @- 2 and a wider spacing through the outer strips.
where the elastic curvatures and moments are known to be less, The averaging of
moments necessitated in the second solution is avoided here, and the third solution is
fully consistent with the equilibrium theory,

Comparing the three solutions just presented shows that the first would be unsat-
isfactory, as noted earlier, because it would require great redistribution of moments to
achieve, possibly accompanied by excessive cracking and large deflections, The sec-
ond, with discontinuity lines following the slab diagonals, has the advantage that the
reinforcement more nearly matches the elastic distribution of moments, but it either
leads to an impractical reinforcing pattern or requires an averaging of moments in
bands that involves a deviation from strict equilibrium theory. The third solution, with
discontinuity lines parallel to the edges. does not require moment averaging and leads
to a practical reinforcing arrangement, so it will often be preferred.

The three examples also illustrate the simple way in which moments in the slab
can he found by the strip method. based on familiar beam analysis, It is important to
note. too, that the load on the supporting beams is easily found because it can be com-
puted from the end reactions of the slab beam strips in all cases, This information is
not available from solutions such as those obtained by the yield line theory.

RECTANGULAR SLABS

With rectangular slabs, it is reasonable to assume that, throughout most of the area, the
load will he carried in the short direction. consistent with elastic theory (see Section
13.4). In addition, it is important to take into account the fact that because of their
length, longitudinal reinforcing bars will be more expensive than transverse bars of the
same size and spacing. For a uniformly loaded rectangular slab on simple supports,
Hillerborg presents one possible division. as shown in Fig. 154, with discontinuiry
lines originating from the slab corners at an angle depending on the ratio of short to
long sides of the slab, All of the load in each region is assumed 1o be carried in the
directions indicated by the arrows,

Instead of the solution of Fig. 154, which requires continuously varying rein-
forcement to be strictly correct, Hillerborg suggests that the load can be distributed as
shown in Fig, 15.5, with discontinuity lines parallel to the sides of the slab. For such
cases, it is reasonable to take edge bands of width equal to one-fourth the short span
dimension, Here the load in the corners is divided equally in the X and ¥ directions as
shown, while elsewhere all of the load is carried in the direction indicated by the arrows,
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FIGURE 15.4 b
Rectangular slab with a =
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The second, preferred arrangement, shown in Fig. 15.5, gives slab moments as
follows:

[n the X direction:
W b b wh?

Side strips: m, = ? 4 Z % E = 4 (13.7a)

. . b b wh?

Middle strips: M, = w X 1 pd PR (15.7h)
In the ¥ direction:

. _ wh? _

Side strips: m, = — {15.8a}
4

_ ) Wi )

Middle strips: m, = q (15.8h)

This distribution. requiring no averaging of moments across band widths, 1s always on
the safe side and is both simple and economical.
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Fixep EDGES AND CONTINUITY

Designing by the strip method has been shown to provide a large amount of flexibility
in assigning load to various regions of slabs. This same flexibility extends to the assign-
ment of moments between negative and positive bending sections of slabs that are fixed
or continuous over their supported edges. Some attention should be paid to clastic
maoment ratios o avoid problems with cracking and deflection at service loads, However,
the redistribution that can be achieved in slabs, which are typically rather lightly rein-
forced and, thus, have large plastic rotation capacities when overloaded, permits consid-
erable arbitrary readjusiment of the ratio of negative to positive moments in a strip,

This is illustrated by Fig. 15.6, which shows a slab strip carrving loads only near
the supports and unloaded in the central region, such as often occurs in designing by
the strip method. It is convenient if the unloaded region is subject to a constant
moment (and zero shear), because this simplifies the selection of positive reinforce-
ment. The sum of the absolute values of positive span moment and negative end
moment at the left or right end, shown as m; and m, in Fig. 15.6, depends only on the
conditions at the respective end and is numerically equal to the negative moment if the
strip carries the load as a cantilever, Thus, in determining moments for design, one cal-
culates the “cantilever” moments, selects the span moment, and determines the corre-
sponding support moments. Hillerborg notes that, as a general rule for fixed edges, the
support moment should be about 1.5 to 2.5 times the span moment in the same strip,
Higher values should be chosen for longitudinal strips that are largely wnloaded, and
in such cases a ratio of support to span moment of 3 to 4 may be used. However, lit-
tle will be gained by using such a high ratio if the positive moment steel is controlled
by minimum requirements of the ACI Code,

For slab strips with one end fixed and one end simply supported, the dual goals
of constant moment in the unloaded central region and a suitable ratio of negative to
positive moments govern the location to be chosen for the discontinuity lines, Figure
15.7a shows a uniformlv loaded rectangular slab having two adjacent edges fixed and
the other two edges simply supported. Note that, although the middle strips have the
same width as those of Fig. 15.5, the discontinuity lines are shifted to account for the
grcater stiffness of the strips with fixed ends. Their location is defined by a coefficient
-, with a value clearly less than 0.5 for the slab shown, its exact value vet to be deter-
mined. It will be seen that the selection of - relates directly to the ratio of negative to
positive momenis in the strips.

The moment curve of Fig. 15.75 is chosen so that moment is constant over the
unloaded part, i.¢., shearing force is zero, With constant moment, the positive steel can
be fully stressed over most of the strip. The maximum positive moment in the X direc-
tion middle strip is then

cwh b L wh?
My =TS g (15.9)
FIGURE 15.6 j-l_l_m_l-l M
Slab strip with central region

unloaded.
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FIGURE 15.7

Rectongular slab with two edges fixed and two edges simply supported.

The cantilever moment at the left support is

wh [2 wi?
mo=-1— — 11— == .]-..7 (15,10
2 4 8
and so the negative moment at the left support is
L wh? wh? wh* ,
L e =-1—-2 {(15.11)
8 B B
For reference, the ratio of negative to positive moments in the X direction middle strip is
"My, ] - 2 _
— = {15.12)
iy -

The moments in the X direction edge strips are one-half of those in the middle strips
because the load is half as great.

It is reasonable o choose the same ratio between support and span moments in
the ¥ direction as in the X direction. Accordingly, the distance from the right support,
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Fig. 15.7¢, to the maximum positive moment section is chosen as - b It follows that
the maximum positive moment is
bl
b _ wh

iy = - wh X — =

5.13
> 5 {15.13}

Applying the same methods as used for the X direction shows that the negative sup-
port moment in the ¥ direction middle strips is

2

It is easily confirmed that the moments in the Y direction edge strips are just one-
eighth of those in the ¥ direction middle strip.

With the above expressions, all of the moments in the slab can be found once a
suitable value for - s chosen. From Eq. (15.12), it can be confirmed that values of -
from 0.35 to 0.39 give corresponding ratios of negative to positive moments from 2.45
to 1.45. the range recommended by Hillerborg. For example, if it is decided that sup-
port moments are to be twice the span moments, the value of - should be 0.366, and
the negative and positive moments in the central strip in the ¥ direction are, respec-
tively, 0.134wh* and 0.067wh”. In the middle strip in the X direction, moments are one-
fourth those values; and in the edge strips in both directions, they are one-eighth of
those values,

My = 1 =2 (15.14)

Rectangular slab with fixed edges. Figure 15.8 shows a typical interior panel of a slab
floor in which support is provided by beams on all column lines, Normally proporiioned
beams will be stiff enough, both flexurally and torsionally, that the slab can be assumed fully
restrained on all sides. Clear spans for the slab, face to face of beams, are 25 L and 20 1 as
shown. The floor must carry a service live load of 150 psf, using concrete with §7 = 3000 psi
and steel with = 60,000 psi. Find the moments at all eritical sections, and determine the
required slab thickness and reinforcement.

SorLurion.  The minimum slab thickness required by the ACI Code can be found from Eq.
(1380, with {, = 25 frand - = 1.25;

b= 25 X 1208 + 60-200- 6.08 |

ST R T
A total depth of 6,75 in. will be selected, for which w, = 150 % 6,75 12 = 84 psf. Applying
the load factors of 1.2 and 1.6 to dead load and lve load, respectively. determines that the
total factored load for design is 340 psf. For strip analysis, discontinuity lines will be
selected as shown in Fig. 158, with edge strips of width # 4 = 20-4 = 5 ft. In the corners,
the load is divided eqgually in the two directions; elsewhere, 100 percent of the load is
assigned to the direction indicated by the arrows, A ratio of support moment (o span moment
of 2.0 will be used. Calculation of moments then proceeds as follows:

X direction middle strip:

wh? 400
Cantilever: = —— = 340 W — = 4250 fi-Ib ft
antilever ", o 2
N 2
Negative: My, = 4250 = 3= 2833

Positive: nr = 4250 % % = 1417
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FIGURE 15.8
Dresign example: two-way
slab with fixed edges
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Y direction middle strip:

1 4
Cantilever: i, = % = 340 x %ﬂ = 17,000 fi-Ib- ft
. 2
MNegative: m,, = 1000 x 3= 11,333
. 1 L
Positive: me = 17000 % 3° 5666
Y direction edge strips:
wh* 400
Cantilever: L= —— = 34 X —— = 2125 fi-lb- 1t
HEY i [ 64
. L2
Megative: m,, = 2125 % 3= 1417
» _ I
Positive: my = 2125 % 3" 708

Strip loads and moment diagrams are as shown in Fig. 15.8. According to ACI Code 7.12,
the minimuem steel required for shrinkage and temperature erack control is 0.0018 = 6,75 % 12
= 00.146 in¥ft strip. With a total depth of 6.75 in., with 7 in. concrete cover, and with esti-
mated bar diameters of fin.. the effective depth of the slab in the short direction will be
5.75 in., and in the long direction, 5.25 in. Accordingly, the flexural reinforcement ratio pro-
vided by the minimum steel acting at the smaller effective depth is

(1.146

iy = T = 0.0023
= Sasx 1z O

From Table A.5a of Appendix A, R = 134, and the flexural design strength is

¥ 134 % 12 % 5.25?
m, = - Rbd® = 090 > 1 T —— = 3324 ft-lb- fi

Comparing this with the required moment resistance shows that the minimum steel will
be adequate in the X direction in both middle and edge strips and in the ¥ direction edge
strips. No. 3 {No. 1) bars at 9 in. spacing will provide the needed area. In the ¥ direction
middle strip, for negative bending,

. m, 11,333 % 12
Chdt 090 % 12 w 5757

= 381

and from Table A.5a. the required reinforcement ratio is 0.0069. The required steel is then
A, = 00069 % 12 % 575 = 048 in™ fi
This will be provided with No. 5 (Mo. [6) bars at 8 in. on centers. For positive bending,

5666 12

= = 190
0.00 % 12 % 5757

for which - = 0.0033, and the required positive steel area per sirip s
A, = 00033 % 12 % 575 = 023 in> 1

to be provided by No. 4 (No, 13) bars on 10 in, centers. Note that slight adjustments down-
ward and upward have been made in the steel required at negative and positive bending sec-
tions, as permitied by ACI Code 8.4, 1o arrive at practical bar spacings, Note also that all bar
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spacings are less than 2 = 2 x 6,75 = 13.5 in., as required by the Code, and that the rein-

forcement ratios are well below the value for a tension-controlled section of (L0135,
Negative bar cutoff points can easily be calewlated from the moment diagrams, For the X

direction middle strip, the point of inflection a distance v from the left edge is found as follows:

-

1700y — 2833 — :hm%= 0

x=211ft

According to the Code, the negative bars must be continued at least d or 124, beyond that
point, requiring a 6 in. extension in this case. Thus, the negative bars will be cut off 2.11 +
0.50 = 2.61 ft, say 2 ft 8 in., from the face of support. The same result is obtained for the X
direction edge strips and the ¥ direction edge strips. For the ¥ direction middle strip, the dis-
tance v = 4.23 ft from face of support to inflection point is found in a similar manner. In
this case, with No, 5 {No, 10} bars used, the required extension is 7.5 in,, giving a total
length past the face of supports of 4.23 + 0.63 = 486 ftor 4 ft 11 in. All positive bars will
be carried 6 in. into the face of the supporting beams.

UnsurPORTED EDGES

The slabs considered in the preceding sections, together with the supporting beams,
could also have been designed by the methods of Chapter 13. The real power of the
strip method becomes evident when dealing with nonstandard problems, such as slabs
with an unsupported edge, slabs with holes, or slabs with reentrant corners {L-shaped
slabs).

For a slab with one edge unsupported, for example, a reasonable hasis for analy-
sis by the simple strip method is that a strip along the unsupported edge takes a greater
load per unit area than the actual unit load acting, i.c., that the strip along the unsup-
ported edge acts as a support for the strips at right angles. Such strips have been
referred to by Wood and Armer as “strong bands™ (Ref. 15.8). A strong band is, in
effect, an integral beam, useally having the same total depth as the remainder of the
slab but containing a concentration of reinforcement. The strip may be made deeper
than the rest of the slab to increase its carrying capacity, but this will not usually be
necessary.

Figure 15.9a shows a rectangular slab carryving a uniformly distributed factored
load w per unit area, with fixed edges along three sides and no support along one short
side. Discontinuity lines are chosen as shown. The Toad on a unit middle strip in the X
direction, shown in Fig. 1598, includes the downward load w in the region adjacent
to the fixed left edge and the upward reaction &w in the region adjacent to the free
edge. Summing moments about the left end, with moments positive clockwise and
with the unknown support moment denoted m., gives

wh®  hwb b

:ri;_,-+3—2—T-a—§- ={)
from which
I+ 32m,, wh’
= Sab -1 {15.15)

Thus, & can be calculated after the support moment is selected.
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The appropriate value of m,, to be used in Eq. (15.15) will depend on the shape
of the slab. If @ is large relative to b, the strong band in the ¥ direction at the edge will
be relatively stiff. and the moment at the left support in the X direction strips will
approach the elastic value for a propped cantilever. If the slab is nearly square, the
deflection of the strong band will tend to increase the support moment: a value about
half the free cantilever moment might be selected (Ref. 15.14),

Once m,, is selected and & is known, it is easily shown that the maximum span
moment occurs when

It has a value

moo= 2 34 (15.16)

The moments in the X direction edge strips are one-half of those in the middle strip.
In the ¥ direction middle strip, Fig. 15.94d, the cantilever moment is wh= 8. Adopting
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FIGURE 15.10
Slab with free edge in long-
span direction,

a ratio of support to span moment of 2 results in support and span moments, respec-
tively, of

.Iﬁ.?

My, = Hi_z (15.17a)
e

my == (15.17h)

Moments in the ¥ direction strip adjacent to the fixed edge, Fig. 15.9¢, will be one-
gighth of those values. In the ¥ direction strip along the free edge. Fig. 15.%¢, moments
can, with slight conservatism, be made equal to (1 + &) times those in the ¥ direction
middle strip.

If the unsupported edge is in the long-span direction. then a significant fraction
of the load in the slab central region will be carried in the direction perpendicular to
the long edges and the simple distribution shown in Fig. 15.104a is more suitable. A
strong hand along the free edge serves as an integral edge beam, with width - & nor-
mally chosen as low as possible considering limitations on tensile reinforcement ratio
in the strong band.

For a ¥ direction strip, with moments positive clockwise,

1 N .
., +Ek]w-] - pT ke BT~ 2 =0
¥
T
Ta—] k] Gikw — F_s po
7 - = -
2 (1—ky)w I
b7
8—7 I’““’ F—8 (1-B)b
7 N
2
v ////////////////////T///// s —;;':
c
” g .
(a) Plan view
) (1 +kg)w . Kyw
g b
/ / LTI
& ¥
—kgl"l-l'
{b) w, along A-A
{d) wyalong C-C
(1 kq)w
]
AT
2

{c) wyalong B-8
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from which

byl =2+ 2mwh?

ko= — (15.18)

The value of k| may be selected so as to make vse of the minimum sieel in the X direc-
tion required by ACI Code 7.12. In choosing m to be used in Eq. (15.18} for calcu-
lating k-, one should again recognize that the deflection of the strong band along the
free edge will tend to increase the Y direction moment at the supported edge above the
propped cantilever value based on zero deflection. A value for ar,, of about half the free
cantilever moment may be appropriate in typical cases. A high ratio of a- b will permit
greater deflection of the free edge through the central region, tending to increase the
support moment, and a low ratio will restrict deflection, reducing the support moment,

Rectangular slab with long edge vnsupported. The 12 > 19 fi slab shown in Fig.
15,1 La, with three fixed edges and one long edge unsupported. must carry a uniformly dis-
tributed service live load of 125 pst. £} = 4000 psi, and £, = 60,000 psi. Select an appro-
priate slab thickness, determine all factored moments in the slab, and select reinforcing bars
and spacings for the slab.

SorLvrion,  The minimum thickness requirements of the ACI Code do not really apply to
the type of slab considered here. However, Table 3.5, which conirols for beamless flat
plates, can be applied conservatively because, although the present slab is beamless along
the free edge. it has infinitely stff supports on the other three edges. From that table, with
I, = 1911,

19 = 12
=5

A total depth of 7 in. will be selected. The slab dead load is 150 % {5 = 88 psf, and the total
factored design load is 1.2 = 88 + 1.6 = 125 = 306 psf.

Acstrong band 2 £t wide will be provided for suppornt along the free edge. In the main slab,
a value &, = 045 will be selected, resulting in a slab load in the Y direction of 0.43 X 306
= |38 psfand in the X direction of L35 = 306 = 168 psf,

First, with regard to the ¥ direction slab strips. the negative moment at the supported edge
will be chosen as one-hall the free cantilever value, which in turn will be approximated
based on 138 psfover an 11 fit distance from the support face to the center of the strong band.
The restraining moment is thus

= 0,91 in,

1138 % 11
M= X T = AUTS flb fi

Then, from Eg. (15.18)

‘= 045567 — 2 > 4175 306 % 144 0403
2 16 7= 16 T
Thus, an uplift of 0.403 = 306 = 123 psf will be provided for the ¥ direction strips by the
strong band, as shown in Fig. 15,114, For this loading, the neggative moment at the left sup-
port is

5

LA 123 3 2 = 11 = 4194 fi-Ib ft

iy, = 138 %

The difference from the original value of 4175 fi-Ib/ft is caused by slight rounding errors
indroduced in the load terms, The statically consistent value of 4194 fi-1b/fi will be used for
desion. The maximum positive moment in the ¥ direction strips will be located at the point
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FIGURE 15.11 Vi
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of zero shear. With v, as the distance of that point from the free edge to the zero shear loca-
tion, anc with reference 1o Fig, 15114,

123 X2 — 138y, — 2- =10
from which v, = 3,78 fi. The maximum positive moment, found at that location, is

1.78°
-

fity = 123 % 2378 — 1 — 138 % = 4065 fi-lb- fi

For later reference in cutting off bars, the point of inflection is located a distance v, from the
free edge:
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123 < 2y, —
resulting in v, = 6.38 fi,
For the X direction slab strips, the cantilever moment is

168 = 19¢

Cantilever: M, = = 7581 ft-1b- ft

A ratio of negative o positive moments of 2.0 will be chosen here, resuliing in negative and
positive moments, respectively, of

2
Negative: i, = 1381 = 3= 5054 ft-1b- ft

]
Positive: iy = 7581 X 5 = 2527 fulb i

as shown in Fig. 15,1154,
The wnit load on the strong band in the X dircction is
A+ kew =1+ 0403 2 306 = 429 psf

so for the 2 ft wide band the load per foot is 2 = 429 = 858 psf, as indicated in Fig. 15.11c,
The cantilever, negative, and positive strong band moments are, respectively,

Cantilever: M, = 858 % 19% 8 = 38,700 fi-Ib
2

Negative: M, = 38,700 = 7= 25,800 fi-Ib
|

Positive: M, = 38,700 x 3= 12,900 fi-1b
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With a negative moment of —23,800 fi-Ib and a support reaction of 858 = £ = 8151 Ib, the
point of inflection in the strong band is found as follows:

B8y’ _

— 25800 + 8I51x — 0
giving ¥ = 401 ft. The inflection point in the X direction slab strips will be at the same
location.

In designing the slab steel in the X direction. one notes that the minimuom steel required
by the ACI Code is 0.0018 = 7 x 12 = 0,15 in¥ft. The effective slab depth in the X direc-
tion, assuming & in. diameter bars with 2 in. cover, is 7.0 — 1.0 = 6.0 in. The corresponding
flexural reinforcement ratio in the X direction s - = L15-{12 X 6) = 0.0021. From Table
ASa, R = 124, and the design strength is

. 124 % 12 2
= kb = 220X I; <O 4018 fielb

It is seen that the minimum slab steel required by the Code will provide for the positive
bending moment of 2527 ft-1b/ft, The requirement of 0,15 in®/ft could be met by No, 3 (No,
10} bars at 9 in. spacing, but to reduce placement costs, No. 4 (No, 13) bars at the maximum
permitted spacing of 2k = 14 in. will be selected, providing 0.17 in®/ft. The X direction neg-
ative moment of 5054 fi-1b/ft requires

i, 5054 = 12

R = = - = 136
Chd® 090 % 12 % 6°

and Table A.5a indicates that the required - = (L0027, Thus, the negative bar requircment
is A, = 0.0027 ® 12 »% 6 = (.19 in’Ht. This will be provided by No. 4 (No. 13) bars at 12
in, spacing, continued 4.01 = 12 + 6 = 54 in,, or 4 ft 6 in.. from the support face.

In the ¥ direction, the effective depth will be one bar diameter less than in the X direction,
or 3.5 in. Thus, the flexural reinforcement ratio provided by the shrinkage and temperature
steel is - = 0,15 (12 % 5.5) = 00023, This results in R = 135, so the design strength is

2
o, = 090 = 135 % 12 % 55 = 1675 ficlb i
12
well above the requirement for positive bending of 473 fi-1b/ft. No. £ (No. 13) bars at 14 in.
will be satisfactory for positive steel in this direction also. For the negative moment of 4194
ft-Ibfft,

- 4194 12
0.90 % 12 % 55°
and from Table A.5a, the required - = 0.0027. The comesponding steel requirement is
00027 % 12 % 5.5 = (.18 in¥/ft, No. 4 (No. 13) bars at 12 in. will be used, and they will
be extended 5.62 > 12 + 6 = T4 in., or 6 £t 2 in., past the support face.
In the strong band, the positive moment of 13,100 fi-Ih requires
12,900 % 12
0.90 x 24 x 6°
The corresponding reinforcement ratio 1s (L0034, and the required bar area 1s

0.0034 % 24 = 6 = 0.49 in®. This can be provided by two No. 5 (No. 16) bars. For the neg-
ative moment of 26,200 fi-1b,

= 154

= 199

25800 =12
0.90 % 24 x 6°
resulting in - = (0.0070, and required steel equal to 0.0070 x 24 % 6 = 1.01 in’. Four

No. 5 (No. 16) bars, providing an area of 1.23 in?, will be used, and they will be cut off
4.01 * 12 + 7.5 =56 in., or 4 ft 8 in., from the support face.

= 108
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The final arrangement of bar reinforcement is shown in Fig. [5.11e and f. Negative bar
culofl locations are as indicated, and development by embedded lengths into the supports
will be provided. All positive bars in the slab and strong band will be carried 6 in. into the
support faces.

FIGURE 15.12
Slab with one free edge and
lincarly varying load.

A design problem commonly met in practice is that of a slab supported along
three edges and unsupported along the fourth, with a distributed load that increases
linearly from zero along the free edge to a maximum at the opposite supported edge,
Examples include the wall of a rectangular tank subjected to liquid pressure and earth-
retaining walls with buttresses or counterforts {see Section 17.1),

Figure 15.12 shows such a slab, with load of intensity wy, at the long, supported
edge, reducing to zero at the free edge. In the main part of the slab, a constant load
kowy, is carried in the X direction, as shown in Fig. 15.12¢: thus, a constant load k,w,
is deducted from the linear varying load in the ¥ direction, as shown in Fig. 15.12d.
Along the free edge, a strong band of width - b is provided, carrying a load k,w,, as in
Fig. 15.12a. and so providing an uplift load equal to that amount at the end of the ¥
direction strip in Fig. 15.12d. The choice of &, and k, depends on the ratio of a- b. If
this ratio is high, &, should be chosen with regard to the minimum slab reinforcement
required by the ACI Code. The value of k, is then calculated by statics, based on a

Y
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EXAMPLE 15.3

selected value of the restraining moment at the fixed edge. say one-half of the free can-
tilever value. In many cases it will be convenient to let &, equal &, Then it is the sup-
port moment that follows from statics. The value of - is selected as low as possible
considering the upper limit on tensile reinforcement ratio in the strong band imposed
by the Code for beams. The strong band is designed for a load of intensity & w, dis-
tributed uniformly over its width - b

SLABs WITH HOLES

Slabs with small openings can uwsually be designed as if there were no openings,
replacing the interrupted steel with bands of reinforcing bars of equivalent area on
either side of the opening in each direction {see Section 13.12). Slabs with larger open-
ings must be treated more rigorously. The strip method offers a rational and safe basis
for design in such cases. Integral load-carrying beams are provided along the edges of
the opening, usually having the same depth as the remainder of the slab but with extra
reinforcement, to pick up the load from the affected regions and transmit it to the sup-
ports. In general, these integral beams should be chosen so as to carry the loads most
directly to the supported edges of the slab. The width of the strong bands should be
selected so that the reinforcement ratios - are at or below the value required 1o pro-
duce a tension-controlled member (ie., -, = 0.005 and - = 0.90). Doing so will
ensure ductile behavior of the slab.

Use of the strip method for analysis and design of a slab with a large central hole
will be illustrated by the following example.

Rectangular slab with central opening.  Figure 15.13a shows a 16 3 28 ft slab with fixed
supports along all four sides. A ceniral opening 4 > 8 ff must be accommodated. Estimated
skab thickness, from Eq. (13.86), is 7 in. The slab is to carry a uniformly distributed factored
load of 300 psf, including self-weight. Devise an appropriate system of strong bands to rein-
force the opening, and determine moments to be resisted at all critical sections of the slab.

SoruTion,  The basic pattern of discontinuity lines and load dispersion will be selected
according to Fig. 15.5. Edge strips are defined having width 4+ = 4 ft. In the corners, the
load is equally divided in the two directions. In the central region, 100 percent of the load is
assigned to the ¥ direction. while along the central part of the short edges, 100 percent of
the load is carried in the X direction. Moments for this “basic case™ without the hole will be
calcnlated and later used as a guide in selecting moments for the actual slab with hole, A
ratio of support to span moments of 2.0 will be vsed generally, as for the previous examples.
Momenis for the slab, neglecting the hole, would then be as follows:

X direction middle strips:

Cantilev =2 300 % & < oa00 et
antilever: n, = 2 i _
2
Negative: My, = 2400 X = = 1600
. 1
Positive: m, = 2400 x 3= 800

X direction edge strips are & middle strip values.
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¥ direction middle strips:

b 16°
Cantilever: i, = % = 300 = = = 9600 fr-Ih- ft
P 2
Negative: My, = 9600 = 3 = Hdll
1
Positive: e = 9600 X 3" 3200

Y direction edge strips are + middle strip values.

Because of the hole, certain strips lack support at one end. To support them, 1 ft wide
strong bands will be provided in the X direction at the long edges of the hole and 2 ft wide
strong bands in the ¥ direction on each side of the hole. The ¥ direction bands will provide
for the reactions of the X dirgetion bands, With the distribution of loads shown in Fig,
15,134, strip reactions and moments are found as follows:

Strip A-A

It may at first be assumed that propped cantilever action is obtained, with the restraint
moment along the slab edge taken as 6400 [-1b/It, the same as for the basic case, Summing
moments about the left end of the loaded strip then results in

300 X 6 % 3~ 6400
B | %55

W) = = |82 psf

The negative value indicates that the cantilever strips are serving as supports for strip D=2,
and in wrn for the strong bands in the ¥ direction, which is hardly a reasonable assumption.
Instead, a discontinuity line will be assumed 5 01 from the support, as shown in Fig, 15,136,
terminating the cantilever and leaving the [ ft strip D-I¥ along the edge of the opening in the
X direction 1o carry its own load. It follows that the support moment in the cantilever strip is

Negative: my, = 300 305 % 25 = 3750 fi-1b- 1
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FIGURE 15.13 300 2
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The restraint moment at the supported edee will be taken o be the same as the basic case.
ie., 1600 ft-1b/ft. Summing moments about the left end of the strip of Fig. 15.13¢ then
results in an uplift reaction at the right end, to be provided by strip £-£, of

=3(){}><4><2—I6{){J
2x9

Wa = 44 psf
The feft reaction is easily found to be 1112 lb, and the point of zero shear is 3.70 ft from the
left support. The maximum positive moment, at that point, is

3.70°
Positive: mre = 1112 % 370 = 1600 - REN:IT = 461 fr-lb ft

Strip C-C
Negative and positive moments and the reaction 1o be provided by strip E-E. as shown in
Fig. 15.134. are all one-half the corresponding values for strip B-B.

Strip D-D
The 1 ft wide strip carries 300 pst in the X direction with reactions provided by the strong
bands E-£, as shown in Fig, 15.13¢, The maximum positive moment is

My = 600 > 2 % 5 = 300 2 4 % 2 = 3600 fi-b- 1
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Strip E-E

In reference to Fig. 1513/, the strong bands in the ¥ direction carry the directly applied load
of 300 pst plus the 44 pst load from steip 8-, the 22 psk load from strip C-C, and the 600 psf
end reaction from strip D-D. For strip £-E the cantilever, negative, and positive moments are

Cantilever: m, =3B XA HX AR+ XK AXO+600XT K55
= 14,132 fi-lb- 1
2
Negative: = 14,132 % 37 9421
. 1
Positive: m= 14,132 % 3" 4711

It should be emphasized that the loads shown are psf and would be multiplied by 2 to obtain
loads per foot acting on the strong bands, Correspondingly, the moments just obtained are
per foot width and must be multiplied by 2 to give the support and span moments for the 2
1t wide strong band.

Strip F-F
The moments for the ¥ direction middle sirip of the basic case may be used without change:
thus, in Fig. 15.13g,

Negative: m,, = 6400 f1-Ih- 11

Positive: me = 3200

Strip G-G

Moments for the ¥ direction edze strips of the basic case are vsed without change, resulting in
Negative: m,, = 800 fi-b- 11

Positive: = 400

as shown in Fig. 15.13/.

The final distribution of moments across the negative and positive critical sections of the
slab is shown in Fig. 15,13/, The selection of reinforcing bars and determination of cutoff
points would follow the same methods as presented in Examples 15,1 and 15.2 and will not
be given here. Reinforcing bar ratios needed in the strong bands are well below the maxi-
mum permitied for the 7 in. slab depth,

It should be noted that strips 8-8, C-C, and D-I) have been designed as if they were sim-
ply supported at the strong band E-E. To avoid undesirably wide cracks where these strips
pass over the strong band. nominal negative reinforcement should be added in this region.
Positive bars should be extended fully into the strong bands,

ADVANCED STRIP METHOD

The simple strip method described in the earlier sections of this chapter 1s not directly
suitable for the design of slabs supported by columns {e.g., flat plates) or slabs sup-
ported at reentrant corners.” For such cases, Hillerborg introduced the advanced strip
method (Refs. 15.2, 15.5, 15,12, and 15.13).

P However, Wood and Armer, in Ref, 158, suggest that beamless stabs with colamp supports cam he solved by the simple strip methad throegh the
wse of strong bands between columms or betwesn columns and exterior walls,
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Fundamental to the advanced strip method is the corner-supported element, such
as that shown shaded in Fig. 15.14a. The comer-supported element is a rectangular
region of the slab with the following properties:

The edges are parallel to the reinforcement directions.

It carries a uniform load w per unit area,

It is supported at only one corner.

No shear forces act along the edges.

No twisting moments act along the edges.

All bending moments acting along an edge have the same sign or are zero.

The bending moments along the edges are the factored moments used to design
the reinforcing bars.

NS R

A uniformly loaded strip in the X direction. shown in Fig. 15.1454, will thus have
shear and moment diagrams as shown in Fig. 15.14¢ and 4, respectively. Maximum
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moments are located at the lines of zero shear, The outer edges of the corner-supported
clement are defined at the Iines of zero shear in both the X and Y directions,

A typical corner-supported element, with an assemed distribution of moments
along the edges, is shown in Fig. 15.15. It will be assumed that the bending moment
is constant along each half of cach edge. The vertical reaction is found by summing
vertical forces:

R = wab (15.19)
and moment equilibrium about the ¥ axis gives

war
Mg, — M= - {15.20)

nmg -

where m, ., and m,,,, are the mean span and support moments per unit width, and beam

sign convention is followed. Similarly,

wh*
¥

My = My = {(15.21)

The last two equations are identical with the condition for a corresponding part
of a simple strip—Eq. (13.20) spanning in the X direction and Eq. (1521} in the ¥
direction—supported at the axis and carrying the load wh or wa per foot. So if the cor-
ner-supported element forms a part of a strip, that part should carry 100 percent of the
load w in each direction. (This requirement was discussed earlier in Chapter 13 and iz
simply a requirement of static equilibrium.)
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Recommended distribution of
moments for typical comer-
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The distribution of moments within the boundaries of a corner-supported ele-
ment is complex. With the load on the element carried by a single vertical reaction at
one cormer, strong twisting moments must be present within the element; this contrasts
with the assumptions of the simple strip method used previously.

The moment field within a corner-supported element and its edge moments have
been explored in great detail in Ref. 1512, It is essential that the edge moments, given
in Fig. 15.15, are used to design the reinforcing bars (i.e., that nowhere within the ele-
ment will a bar be subjected to a greater moment than at the edges). To meet this
requirement. a limitation must be put on the moment distribution along the edges.
Based on his studies (Ref. 15.12), Hillerborg has recommended the following restric-
tion on edge moments:

2
Mlypr = My = - ——— (15.22a)

with
25 = =07 (15,225}

where at,» and m,, are the positive and negative X direction moments, respectively.
in the outer half of the element, as shown in Fig. 15,15, The corresponding restriction
applies in the ¥ direction. He notes further that for most practical applications, the
edge moment distribution shown in Fig. 15,16 is appropriate, with

m.t‘ﬂ = m.r_r'l = "”.r,fm {1523}
Mgz = a (152‘4&)
My = zmnm (1524b}

(Alternatively. it is suggested in Ref. 1514 that negative support moments across the

column line be taken at 1.5m ., in the half-element width by the column and at

Yk
myfm
J i
I —
mst‘i % Myim
b —
B =
b 2myes EH —
2 Ny g —
- = =—
Mysm
2y
ﬂ—g—ﬁ
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EXAMPLE 154

FIGURE 15.17
Diesign example; edge-
supported flat plate with
central column.

0.5m,,,, in the remaining outside half-element width.) Positive reinforcement in the
span should be carried through the whole corner-supported element. The negative
reinforcement corresponding to m,,, — m,,, in Fig. 15,15 must be extended at least
(.6 from the support. The remaining negative steel, if any. should be carried through
the whole comner-supported element. The comesponding restrictions apply in the ¥
direction.

In practical applications., comer-supported elements are combined with each
other and with parts of one-way strips, as shown in Fig. 15.14, to form a system of
strips. In this system, each strip carries the total load w, as discussed earlier. In laying
out the elements and strips, the concentrated corner support for the element may be
assumed to be at the center of the supporting column, as shown in Fig. 15.14, unless
supports are of significant size. In that case, the corner support may be taken at the
comer of the column, and an ordinary simple strip may be included that spans between
the column faces. along the edge of the corner-supported elements. Note in the figure
that the comer regions of the slab are not included in the main strips that include the
comer-supported elements. These may safely be designed for one-third of the corre-

sponding moments in the main strips (Ref. 15.13).

Edge-supported flat plate with central column,  Figure 15.17a illustrates a flat plate
with overall dimensions 34 % 34 fi, with fixed supports along the left and lower edges in the
sketch, hinged supports at the right and upper edges. and a single central column 16 in,
squarg. 1t must carry a service live load of 40 pst over its entire surface plus its own weight
and an additional superimposed dead load of 7 psf, Find the moments at all critical sections,
and determine the required slab thickness and reinforcement. Material strengths are speci-
fied at f, = 60,000 psi and £ = 4000 psi.

17’ 17 2 edges
" simply supported
T .““I““T“}
a4 . . .
" 1
<] | -—I—- | |
]
7 ——
— ] — - ——-—-lHCcrlumn
4 16" % 167
| d—}b 1 T 1 |
7 | |
7o - - _
7 T
1 \ I \ |
e | L
]
2 ed |’
edges .
fixed {a) Plan view
A 170 Ibft
Innnnmmm
s e Feard

(b) Strip load, Ib/ft
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Sovvrion. A trial slab depth will be chosen based on Table 13.5, which governs for flat
plates. Tt will be conservative for the present case, where continuous support is provided
along the outer edges.

o 171x12
33

A thickness of 6.5 in. will be selected tentatively, for which the sell-weight is 150 < 6.5 12
= B1 psf. The total factored load w be carried is thus:

w, = L2-81 + 7+ 1.6 = 40 = 170 psl

The average strip moments in the X direction in the central region caused by the load of
170 psf are found by elastic theory and are shown in Fig. 15.17¢. The analysis in the ¥ direc-
tion is identical. The points of zero shear (and maximum moments) are located 2.11 ft to the
left of the column, and 10,32 11 1o the right, as indicated. These dimensions determine the
size of the four corner-supported elements.

Moments in the slab are then determined according to the preceding recommendations,
At the fixed edge along the left side of the main strips, the moment #1,, is simply the moment
per foot strip from the elastic analysis, 35309 f1-1b/fi. At the left edge of the comer-supported
element in the left span,

= 0.18 in,

My = M = g, = 1788 fi-Ib- fi

Along the centerline of the slab, over the column, tollowing the recommendations shown in
Fig. 15.16.

My = D
i,y = 2m,,,. = 10528 fi-Ib ft

~5264

~3500
VAN
+1788 \—/

+3789
7.88° | 9.11' 10.32' | 6.68'

() Moments m,, ft-lb/ft

7.89 456" 0.72" 516 6.68

4]
- o
o] =] (i
<] = § 1789 o
< 1| 1283 1263
o
-
wn 10528
| @ @
o o &
s| & | F = " °
@ so5 | (1788 596
- w oy
o = & =
~ =l1170 3508 1170

{d) Factored moments per 1 foot strip
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Ad the right edze of the corner-supported element in the right span,

At the outer, hinge-supported edge, all moments are zero. Make a check of the

Eq. (15.225), and note from Eq. (15.20) that wa® 2 = m,, —

wr 1788 =0
1788 + 3264

Wiy = Mg = W, = 3789 ft-1b- fi

Bl cq ™ i

Wel™ 2

values, using
e Thus, in the left span,

i

= (1,25
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and in the right span,
3789 - 0
T30+ soes OH

Because both values are within the range of 0.25 to 0,75, the proposed distribution of
moments is satisfactory, I the first value had been below the lower limit of 025, the nega-
tive moment in the column half-strip might have been reduced from 10,528 fi-Ib per ft, and
the negative moment in the adjacent half-strip might have been increased above the O valoe
used. Alternatively, the total negative moment over the column might have been somewhat
decreased, with a corresponding increase in span moments,

Moments in the ¥ direction correspond throughout. and all results are summarized in Fig.
15,174, Moments in the strips adjacent 1o the supported edges are set equal to one-third of
those in the adjacent main strips.

With moments per ft strip known at all eritical sections, the required reinforcement is eas-
ily found. With a 7 in. concrete cover and 1 in. bar diameter, in general the effective depth of
the slab will be 3.5 in. Where bar stacking occurs—i.e., over the central column and near
the intersection of the two fixed edges—an average effective depth equal to 5.25 in. will be
used. This will result in reinforcement identical in the two directions and will simplify con-
struction.

For the 6.5 in. thick slab, minimum steel for shrinkage and temperature crack control is
0.0018 ® 6.5 12 = 0,140 in¥ft strip, which will be provided by No. 3 (No. 100 bars at 9
in. spacing. The corresponding flexural reinforcement ratio is

.140

i = = 0.0021
meTSA % 12

Interpolating from Table A.5a of Appendix A makes & = 124, and the design strength is
S, = Rbd® =000 % 124 % 12 % 55712 = 3376 fi-lb 11

In comparison with the required strengths summarized in Fig. 15174, this will be adequate
everywhere except for particular regions as follows:
Negative sreel over cofumn:
iy 10,528 > 12

R= = = 424
Sbhd? 090 % 12 % 5.257

for which - = 0.0076 {from Table A.5a). and A, = 0.0076 > 12 > 5.25 = (.48 in¥/ft. This
will be provided wsing No. 5 (Mo, 16) bars at 7.5 in. spacing. They will be continued a dis-
tance 0.6 = 9.11 = 5.47 ft, say 5 ft 6 in., to the left of the column centerline, and (1.6 > 10.32
= .19 ft, say 6 11 3 in.. o the right.

Negative steel along fived edges:

3500 » 12

= = |29
0.90 > 12 X 5.50°

for which - = 00022 and A, = 0.0022 » 12 x 5.5 = 0.15 in®ft. No, 3 (No. 10) bars at 9
in. spacing will be adequate. The point of inflection for the slab in this region is easily found
to be .30 ft from the fixed edge. The negative bars will be extended 5.5 in. bevond that
point, resulting in a cutoff 45 in., or 3 ft 9 in., from the support face,

Pasitive steel in outer spans:

R R 12
T 090 % 12 % 5.507

139

resulting in - = 0.0024 and A, = 0.0024 x 12 > 5.5 = 0.16 in*/fi. No. 3 (No. 10) bars at
8 in. spacing will be used. In all cases, the maximum spacing of 2 = 13 in. is satisfied. That
maximum would preclude the economical use of larger diameter bars.
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Bar size and spacing and cutoff points for the top and bottom steel are summarized in
Fig. 15.17¢ and f, respectively.
Finally, the load carried by the central column is

P =170 % 1943 x 1943 = 64,200 1b

Investigating punching shear at a cribical section taken o 2 from the face of the 16 . col-
umn, with reference o Eq. (13.1a) and with &, = 4 > (16.00 + 523) = 85 in., gives

V=4 - [ hd=4x075 I000 X 85 ¥ 525 = 84,700 1b

This is well above the applied shear of 64,200 Ib, confirming that the slab thickness is ade-
quate and that no shear reinforcement is required.

ComprarIsONS OF METHODS FOR SLAB ANALYSIS AND DESIGN

The conventional methods of slab analysis and design, as described in Chapter 13 and
as treated in Chapter 13 of the ACI Code, are limited to applications in which slab pan-
els are supported on opposite sides or on all four sides by beams or walls or to the case
of flat plates and related forms supported by a relatively regular array of columns. In
all cases, slab panels must be square or rectangular, loads must be uniformly distrib-
uted within each panel, and slabs must be free of significant holes.

Both the yield line theory and the strip method offer the designer rational meth-
ods for slab analysis and design over a much broader range, including the following:

1. Boundaries of any shape, including rectangular, triangular, circular, and L-shaped
boundaries with reentrant corners

2. Supported or unsupported edges. skewed supports, column supports, or various
combinations of these conditions

3. Uniformly distributed loads, loads distributed over partial panel areas. linear
varying distributed loads, line loads, and concentrated loads

4. Slabs with significant holes

The most important difference between the strip method and the yield line
method is the fact that the strip method produces results that are always on the safe
side, but yield line analysis may result in unsafe designs. A slab designed by the strip
method may possibly carry a higher load than estimated, through internal force redis-
tributions, before collapse; a slab analyzed by yield line procedures may fail at a lower
load than anticipated if an incorrect mechanism has been selected as the basis or if the
defining dimensions are incorrect.

Beyond this, it should be realized thar the strip method is a tool for design, by
which the slab thickness and reinforcing bar size and distribution may be selected to
resist the specified loads. In contrast, the yield line theory offers only a means for ana-
lvzing the capacity of a given slab, with known reinforcement. According to the vield
line approach, the design process is actually a matter of reviewing the capacities of a
number of trial designs and alternative reinforcing patterns. All possible yield line pat-
terns must be investizated and specific dimensions varied to be sure that the correct
solution has been found. Except for simple cases, this is likely to be a time-consuming
process.

Neither the strip method nor the vield line approach provides any information
regarding cracking or deflections at service load. Both focus attention strictly on flex-
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ural strength. However, by the strip method, if care is taken at least to approximate the
elastic distribution of moments, little difficulty should be experienced with excessive
cracking. The methods for deflection prediction presented in Section 13,13 can, with-
out difficulty. be adapted for use with the strip method, because the concepts are fully
compatible.

With regard to economy of reinforcement, it might be supposed that use of the
strip method, which always leads to designs on the safe side, might result in more
expensive structures than the yield line theory. Comparisons, however, indicate that,
in most cases, this is not so (Refs. 15.8 and 15.12). Through proper use of the strip
method, reinforcing bars are placed in a nonuniform way in the slab (e.g.. in strong
bands around openings) where they are used to best effect: yield line methods, on the
other hand, often lead to uniform bar spacings. which may mean that individual bars
are used inefficiently.

Many tests have been conducted on slabs designed by the strip method (Ref.
15.11; also, see the summary in Ref. 15.12). These tests included square slabs, rec-
tangular slabs, slabs with both fixed and simply supported edges. slabs supported
directly by columns, and slabs with large openings. The conclusions drawn determine
that the strip method provides for safe design with respect to nominal strength and that
at service load. behavior with respect to cracking and deflections is generally satis-
factory. The method has been widely and successfully used in the Scandinavian coun-
tries since the 1960s.

151 AL Hillerborg, “Eguilibrivem Theory for Reinforced Conerete Slabs™ (in Swedish), Betone. vol. 41, no. 4,
1936, pp. ITI-1H2,
15.2. A, Hillerborg, Sreip Method for Stabs o Columns, L-Shaped Plates, Ere. {in Swedishy, Svenska
Rikshygaen, Stockholin, 1954,
153 A Hillerborg, A Plastic Theory for the Desion of Reinforced Conerete Slabs” Proc, Siah Congr,
Internationid Association for Bridge and Strructural Engincering. Stockholm, 1960,
134 BB, Crawlond, Linge Design of Reinforced Conevete Slabs, thesis submitied (o University of Tineis for
the degree of Pho1d Urhana, IE. 1962
155, B AL Blakey, Steip Method for Slabs on Columwes, L-Shaped Plates, Ere. (ranslation of Rel, 15.2),
Commaonwealth Scientific and Industrial Rescarch Orpanization. Melbourne, 1964
15.6. K. (0 Kemp, “A Lower Bowsd Solution o the Collapse of an Crihotropically Reinforced Slab on Simple
Supports.” Mag, Coser: Res, vol. T4 no. 41, 1962, pp. TU-E4
157, K. Kemp, “Costinaity Conditions in the Strip Method of Slab Desiga” Proc. fust Cive Eng., vol. 45,
TUTI, p. 283 (supplement paper T268s).
158 BOHL Wood and G S0 T Armer, “The Theoey of the Steip Method lor the Desizn of Slahs” Proe, Trse.
Cive Eng..vol. 41, 1968 pp. 285-311.
1548 KoM Woed, “The Reinforcement of Slabs in Accordance with a Predeiermined Field of Moments”
Cotterete, vol. 2, ne, 2, T96E, pp. 6976,
L5010 G 5 T Armer, “The Sirip Method: A New Approach 1o the Design of Slabs” Cowncrere, vol. 2, no, 9,
1968, pp. 358363,
1511, GL& T Armer, “Ultimate Lo Tests of Slabs Designed by the Serip Method,” Proe, fuse. Cive Enge, vol.
41, 1968, pp. 313331,
1512, A. Hillerhorg, Serip Method of Desipn, Viewpoint Publications, Cement and Concrete Association,
Wexham Springs, Slovugh, England, 1975
15,13 A Hillerborg, “The Advanced Strig Method—a Simple Design Tool” Mag, Coner: Bes.. vol. 34, oo, 121,
1UE2, pp. I75-0R1E
1514, R, Pak and W. L. Gamble, Reinforeed Concrete Slabis, 2nd ed, {Chapler 6), John Wiley, New York, 2000,
pp. 232-302.
1515 A Hillerborg, Strip Method Design Hondboed:, B & FN Spon/Chapman & 10l London, 149%a.
1516, 5. Tunoshenkoe and 5. Wodnowsky-Kricoer, Theory of Plates and Shedls, 2nd ed., McCraw-Hill, New
York, 1959,
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Note: For all the following problems, use material strengths f, = 60,000 psi and ! =
4000 psi. All ACI Code requirements for minimum steel, maximum spacings, bar cut-
off, and special corner reinforcement are applicable.

15.1. The square slab of Fig. P15.1 is simply supporied by masonry walls along all
four sides. It is to carry a service live load of 100 psf in addidon to its seli-
weight. Specily a suitable load distribution; determine moments at all control-
ling sections; and select the slab thickness, reinforcing bars, and spacing.

FIGURE P15.1 ; 24—

152, The rectangular slab shown in Fig. P15.2 is a typical interior panel of a large
floor system having beams on all column lines. Columns and beams are suffi-
ciently stiff that the slab can be considered fully restrained along all sides. A
live load of 100 psf and a superimposed dead load of 30 psf must be carried in
addition to the slab self-weight. Determine the required slab thickness, and
specify all reinforcing bars and spacings, Cutoff points for negative bars
should be specified: all positive steel may be carried into the supporting
beams. Take support moments to be 2 times the span moments in the strips.

FIGURE P15.2 fo 04"

15.3, The slab of Fig. P15.3 may be considered fully fixed along three edges. but it
is without support along the fourth, long side. It must carry a uniformly dis-
tributed live load of 80 psf plus an external dead load of 40 psf. Specify a suit-
able slab depth. and determine reinforcement and cutoff points.
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24"

[ 3 edges fixed

:

12

|

Free edge j

Figure P15.4 shows a counterfort retaining wall (see Section 17.9) consisting
of a base slab and a main vertical wall of constant thickness retaining the earth,
Counterfort walls spaced at 19 ft on centers along the wall provide additional
support for the main slab. Each section of the main wall, which is 16 ft high
and 18 ft long, may be considered fully fixed at its base and also along its two
vertical sides (because of full continuity and identical loadings on all such pan-
els). The top of the main wall is without support. The horizontal earth pressure
varies from 0 at the top of the wall o 587 psf at the top of the base slab.
Determine a suitable thickness for the main wall, and select reinforcing bars
and spacing.

|- 19 -i Free Retaining

|t -‘84 ]

/ edge /, wall

Earth fill

Counterfort Lo Counterfort

.

Base slab

The triangular slab shown in Fig, P15.5, providing cover over a loading dock,
is fully fixed along two adjacent sides and free of support along the diagonal
edge. A uniform snow load of 60 psf is anticipated. Dead load of 10 psf will
act, in addition to self-weight. Determine the required slab depth and specify
all reinforcement. (Hint: The main bottom reinforcement should be parallel to
the free edge, and the negative reinforcement should be perpendicular to the
supported edges.)
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15.6. Figure P15.6 shows a rectangular slab with a large opening near one comer. It
is simply supported along one long side and the adjacent short side. and the
two edges adjacent to the opening are fully fixed. A factored load of 250 psf
must be carried. Find the required slab thickness, and specify all reinforcement.
FIGURE P'15.6 . 26 »
~— 2 simply-supported
,/ edges
DY
|
I Fixed edge
|
18" |
|
| s
[ 6.5
+ ¥

FIGURE P15.7

Fixed adge /‘ e— 13—

15.7.

The roof deck slab of Fig. P15.7 is intended to carry a total factored load,
including self-weight, of 165 psf. It will have fixed supports along the two long
sides and one short side, but the fourth edge must be free of any support. Two
16 in. square columns will be located as shown.

{a) Determine an acceptable slab thickness.

{h) Select appropriate load dispersion lines,

() Determine moments at all critical sections.

(e) Specify bar sizes, spacings. and cutoff points.

{e) Check controlling sections in the slab for shear strength.

/ 3 edges fixed

St

St M

Free edge

Columns ./

| 16" % 16" |
{0

ST LEL LT LTSS

L— 16’ —-L— 16’—-L— ?'—-J



