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FLEXURAL ANALYSIS
AND DESIGN OF BEAMS

INTRODUCTION

The fundamental assumptions upon which the analysis and design of reinforced con-
crete members are based were introduced in Section 1.8, and the application of those
assumptions to the simple case of axial loading was developed in Section 1.9, The stu-
dent should review Sections 1.8 and 1.9 at this time. In developing methods for the
analysis and design of beams in this chapter, the same assumptions apply, and identi-
cal concepts will be used. This chapter will include analysis and design for flexure,
including the dimensioning of the concrete cross section and the selection and place-
ment of reinforcing steel. Other important aspects of beam design including shear
reinforcement, bond and anchorage of reinforcing bars, and the important questions of
serviceability (e.g., limiting deflections and controlling concrete cracking) will be
treated in Chapters 4, 5. and 6.

BenDING OF HOMOGENEOUS BEAMS

Reinforeed concrete beams are nonhomogeneous in that they are made of two entirely
different materials. The methods used in the analysis of reinforced concrete beams are
therefore different from those used in the design or investigation of beams composed
entirely of steel, wood, or any other structural material. The fundamental principles
involved are, however, essentially the same. Briefly. these principles are as follows,

At any cross section there exist internal forces that can be resolved into compo-
nents normal and tangential to the section. Those components that are normal to the
section are the bending stresses (tension on one side of the neutral axis and compres-
sion on the other). Their function is to resist the bending moment at the section. The
tangential components are known as the shear stresses, and they resist the transverse
or shear forces.

Fundamental assumptions relating to flexure and flexural shear are as follows:

1. A cross section that was plane before loading remains plane under load. This
means that the unit strains in a beam above and below the neutral axis are pro-
portional to the distance from that axis.

2. The bending stress f at any point depends on the strain at that point in a manner
given by the stress-strain diagram of the material. If the beam is made of a homo-
geneous material whose stress-strain diagram in tension and compression is that
of Fig. 3.1a, the following holds. If the maximum strain at the outer fibers is
smaller than the strain - | up to which stress and strain are proportional for the
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given material, then the compression and tension stresses on either side of the
axis are proportional to the distance from the axis, as shown in Fig. 3.15,
However, if the maximum strain at the outer fibers is larger than -, this is no
longer true. The situation that then occurs is shown in Fig. 3.1¢; i.e., in the outer
portions of the beam, where - - - . stresses and strains are no longer propor-
tional. In these regions, the magnitude of stress at any level, such as f; in Fig. 3.1¢,
depends on the strain - , at that level in the manner given by the stress-strain dia-
gram of the material. In other words, for a given strain in the beam, the stress at
a point is the same as that given by the stress-strain diagram for the same strain,
The distribution of the shear stresses - over the depth of the section depends on
the shape of the cross section and of the stress-strain diagram. These shear
stresses are largest at the neutral axis and equal to zero at the outer fibers, The
shear stresses on horizontal and vertical planes through any point are equal.
Owing to the combined action of shear stresses (horizontal and vertical) and flex-
ure stresses, at any point in a beam there are inclined stresses of tension and com-
pression, the largest of which form an angle of 90° with each other. The intensity
of the inclined maximum or principal stress at any point is given by
. )
=L L (3.1)
2 - 4
where [ = intensity of normal fiber stress
= intensity of tangential shearing stress

The inclined stress makes an angle - with the horizontal such thattan 22 = 2- - f
Since the horizontal and vertical shearing stresses are equal and the flexural
stresses are zero at the neutral plane, the inclined tensile and compressive stresses
at any point in that plane form an angle of 45° with the horizontal, the intensity
of ¢ach being equal 1o the unit shear at the point.
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6. When the stresses in the outer fibers are smaller than the proportional limit f,.
the beam behaves elastically, as shown in Fig. 3.15. In this case the following
pertains:

{a} The neniral axis passes through the center of gravity of the cross section.

(b} The intensity of the bending stress normal to the section increases directly with
the distance from the neutral axis and is a maximum at the extreme fibers. The
stress at amy given point in the cross section is represented by the equation

My
f==t (3.2)
)
where f = bending stress at a distance v from neutral axis
M = external bending moment at section
{ = moment of inertia of cross section about neutral axis
The maximum bending stress occurs at the outer fibers and 1s equal to
Me M
L — = (3.3)
.uﬁﬂ £) ! S “

where ¢ = distance from neutral axis to outer fiber
8 = [ ¢ = section modulus of cross section

(¢} The shear stress (horizontal equals vertical) - at any point in the cross section is
given by
_ Ve

I (34)

where V = total shear at section
( = statical moment about neutral axis of that portion of cross section lying
between a line through point in question parallel to neutral axis and near-
est face (upper or lower) of beam
I = moment of inertia of cross section about nentral axis
B = width of beam at a given point

(d) The intensity of shear along a vertical cross section in a rectanguolar beam varies
as the ordinates of a parabola, the intensity being zero at the outer fibers of the
beam and a maximum at the neutral axis. For a total depth A, the maximum is
V. bh, since at the neutral axis @ = bh*> 8 and [ = bh* 12 in Eq. (3.4).

The remainder of this chapter deals only with bending stresses and their effects
on reinforced concrete beams, Shear stresses and their effects are discussed separately
in Chapter 4.

ReimnFOrRCED CONCRETE BEAM BEHAVIOR

Plain concrete beams are inefficient as flexural members because the tensile strength
in bending (modulus of rupture. see Section 2.9) is a small fraction of the compressive
strength. As a conseguence, such beams fail on the tension side at low loads long
before the strength of the concrete on the compression side has been fully utlized. For
this reason. steel reinforcing bars are placed on the tension side as close o the extreme
tension fiber as is compatible with proper fire and corrosion protection of the steel. In
such a reinforced concrete beam, the tension caused by the bending moments is chiefly
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resisted by the steel reinforcement, while the concrete alone is usually capable of
resisting the corresponding compression. Such joint action of the two materials is
assured if relative slip is prevented. This is achieved by using deformed bars with their
high bond strength at the steel-concrete interface (see Section 2.14) and, if necessary,
by special anchorage of the ends of the bars. A simple example of such a beam, with
the customary designations for the cross-sectional dimensions. is shown in Fig. 3.2,
For simplicity, the discussion that follows will deal with beams of rectangular cross
section, even though members of other shapes are very common in most concrete
structures.

When the load on such a beam is gradually increased from zero to the magni-
tude that will cause the beam to fail, several different stages of behavior can be clearly
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distinguished. At low loads, as long as the maximum tensile stress in the concrete is
smaller than the modulus of rupture, the entire concrete is effective in resisting stress,
in compression on one side and in tension on the other side of the newutral axis. In addi-
tion, the reinforcement, deforming the same amount as the adjacent concrete, is also
subject to tensile stresses. At this stage, all stresses in the concrete are of small mag-
nitude and are proportional to strains, The distribution of strains and stresses in con-
crete and steel over the depth of the section is as shown in Fig. 3.2¢.

When the load is further increased, the tensile strength of the concrete is soon
reached. and at this stage tension cracks develop. These propagate quickly upward to
or close to the level of the neutral plane, which in turn shifts upward with progressive
cracking. The general shape and distribution of these tension cracks is shown in Fig,
3.2d. In well-designed beams, the width of these cracks is so small (hairline cracks)
that they are not objectionable tfrom the viewpoint of either corrosion protection or
appearance. Their presence, however, profoundly affects the behavior of the beam
under load. Evidently., in a cracked section, Le., in a cross section located at a crack
such as g-a in Fig, 3.24. the concrete does not transmit any tensile stresses. Hence, just
as in tension members (Section 1.9b). the steel is called upon to resist the entire ten-
sion. At moderate loads, if the concrete stresses do not exceed approximately -2
stresses and strains continue to be closely proportional (see Fig. 1.16). The distribu-
tion of strains and stresses at or near a cracked section is then that shown in Fig. 3.2e.
When the load is still further increased, stresses and strains rise correspondingly and
are no longer proportional. The ensuing nonlinear relation between stresses and strains
is that given by the concrete stress-strain curve. Therefore, just as in homogeneous
beams (see Fig. 3.1), the distribution of concrete stresses on the compression side of
the beam is of the same shape as the stress-strain curve. Figure 3.2f shows the distri-
bution of strains and stresses close to the ultimate load.

Eventually. the carrying capacity of the beam is reached. Failure can be caused
in one of two ways, When relatively moderate amounts of reinforcement are employed,
at some value of the load the steel will reach its yield point. At that stress, the rein-
forcement yields suddenly and stretches a large amount (see Fig. 2.15), and the ten-
sion cracks in the concrete widen visibly and propagate upward, with simultaneous
significant deflection of the beam. When this happens, the strains in the remaining
compression zone of the concrete increase to such a degree that crushing of the con-
crete, the secondary compression failure, ensues at a load only slightly larger than that
which caused the steel to vield. Effectively, therefore, attainment of the yield point in
the steel determines the carrying capacity of moderately reinforced beams. Such yield
failure is gradual and is preceded by visible signs of distress, such as the widening and
lengthening of cracks and the marked increase in deflection.

On the other hand, if large amounts of reinforcement or normal amounts of steel
of very high strength are emploved, the compressive strength of the concrete may be
exhausted bhefore the steel starts vielding. Conerete fails by crushing when strains
become so large that they disrupt the integrity of the concrete. Exact criteria for this
occurrence are not yet known, but it has been observed that rectangular beams fail in
compression when the concrete strains reach values of about 0.003 to 0.004.
Compression failure through crushing of the concrete is sudden, of an almost explo-
sive nature, and occurs without warning. For this reason it is good practice to dimen-
sion beams in such a manner that should they be overloaded, failure would be initiated
by yielding of the steel rather than by crushing of the concrete.

The analysis of stresses and strength in the different stages just described will be
discussed in the next several sections.
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FIGURE 3.3 [ /
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a. Stresses Elastic and Section Uncracked

As long as the tensile stress in the concrete is smaller than the modulus of rupture, so
that no tension cracks develop, the strain and stress distribution as shown in Fig, 3.2c
is essentially the same as in an elastic, homogeneous beam (Fig. 3.15). The only dif-
ference is the presence of another material, the steel reinforcement. As shown in
Section 1.9a, in the elastic range. for any given value of strain, the stress in the steel
is nt times that of the concrete [Eq. (1.6)]. In the same section, it was shown that one
can take account of this fact in calculations by replacing the actual steel-and-concrete
cross section with a fictitious section thought of as consisting of conecrete only. In this
“transtormed section.” the actual area of the reinforcement is replaced with an equiv-
alent concrete area equal to nd, located at the level of the steel. The transformed,
uncracked section pertaining to the beam of Fig. 3.2b is shown in Fig. 3.3,

Once the transformed section has been obtained, the usual methods of analysis
of elastic homogenecous beams apply, That is, the section properties (location of neu-
tral axis, moment of inertia, section modulus, ete.) are caleulated in the usual manner,
and, in particular, stresses are computed with Eqgs. (3.2) to (3.4),

EXAMPLE 3.1 A rectangular beam has the dimensions {(see Fig. 3.20) 6 = 10in., i = 25 in., and = 23 in.,
and is reinforced with three No, 8 (No. 25) bars so that A, = 237 in®. The concrete cylin-
der strength £ is 4000 psi, and the tensile strength in bending {modulus of rupture) is 475
psi. The vield point of the steel £, is 60,000 psi. the stress-strain curves of the materials being
those of Fig. 1,16, Determine the stresses caused by a bending moment M = 45 fi-kips.

SoLvrion,  With a value n = £ E. = 29,000,000- 3,600,000 = 8, one has to add to the
rectangular outling an area (n — 1)4, = 7 ¥ 2,37 = 16,59 in”, disposed as shown on Fig.
3.4, to obtain the uncracked, transformed section. Conventional caleulations show that the
location of the nevtral axis of this section is given by ¥ = 13.2 in., and its moment of iner-
tia about this axis is 14,740 in*, For M = 45 ft-kips = 540,000 in-1b, the concrete compres-
sion stress at the top fiber is, from Eq. {3.3),

[3.2
o= 540,000 ———— = 484 psi
Jo = 3000750 Pt
and, similarly. the concrete tension stress at the bottom fiber is

1.3

fer = 330000725

= 432 pai
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FIGURE 3.4 — 10" —
Transformed beam section of .
Example 3.1.
¥

"3 No. 8 (No. 25)

Since this value is below the given tensile bending strength of the concrete, 475 psi. no ten-
sion cracks will form, and calculation by the uncracked, ransformed section is justified. The
stress in the steel, from Eqgs. (1.6) and (3.2}, is

14,740

My i
f,=n T = §. 540,000 = 2870 psi
By comparing f. and f, with the cylinder strength and the vield point respectively, it is seen
that at this stage the actual stresses are quite small compared with the available strengths of
the two materials.

Stresses Elastic and Section Cracked

When the tensile stress f, exceeds the modulus of rupture, cracks form, as shown in
Fig. 3.2d. I the concrete compressive stress is less than approximately + 7. and the
steel stress has not reached the yield point, both materials continue to behave elasti-
cally, or very nearly so. This situation generally occurs in structures under normal
service conditions and loads, since at these loads the stresses are generally of the order
of magnitude just discussed. At this stage, for simplicity and with little if any error, it
is assumed that tension cracks have progressed all the way to the neutral axis and that
sections plane before bending are plane in the deformed member. The situation with
regard to strain and stress distribution is then that shown in Fig. 3.2e.

To compute stresses, and strains if desired, the device of the transformed section
can still be used. One need only take account of the fact that all of the conerete that is
stressed in tension is assumed cracked, and therefore effectively absent. As shown in
Fig. 3.54, the transformed section then consists of the concrete in compression on one
side of the axis and » times the steel area on the other. The distance to the neutral axis,
in this stage, is conventionally expressed as a fraction kd of the effective depth d.
(Once the concrele is cracked. any material located below the steel is ineffective,
which is why o is the efTective depth of the beam.) To determine the location of the
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neutral axis, the moment of the tension area about the axis is set equal to the moment
of the compression area. which gives
d.z

b—
2

—nA,d —kd =10 (3.5}

Having obtained &d by solving this quadratic equation, one can determine the
moment of inertia and other propertics of the transformed section as in the preceding
case, Alternatively, one can proceed from basic principles by accounting directly for
the forces that act on the cross section, These are shown in Fig. 3.50. The concreme
stress, with maximum value £ at the owter edge, is distributed linearly as shown, The
entire steel arca A, is subject to the stress f. Correspondingly, the total compression
force C and the total wension force T are

C= % bl and T=A[ (3.6)

The requirement that these two forces be equal numerically has been taken care of by
the manner in which the location of the neuiral axis has been determined,

Equilibrium requires that the couple constituted by the two forces C and T be
cqual numerically to the external bending moment M. Hence, taking moments about
C gives

M =Tjd = A[f jd (3.7

where fd is the internal lever arm between C and T. From Eq. (3.7}, the steel stress is
M

L= — 3.8

5= A (3.8)

Conversely, taking moments about T gives

I fe

M = Cjd = bkdjd = = kjbd® (3.9)
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EXAMPLE 3.2

from which the concrete stress is

2™
kibd*
In using Eqgs. (3.6) through (3.10), it is convenient to have equations by which & and j

may be found directly, to establish the newtral axis distance &d and the internal lever
arm jd. First defining the reinforcement raiio

fe (3.10)

= A (3.11)
b h
then substituting A, = - bd into Eq. (3.5) and solving for k, one obtains

k= -n*+2n--n {3.12)
From Fig. 3.5b it is seen that jd = d — kd 3, or
k

f=1-7 313

j=1=3 (3.13)

Values of k and j for elastic cracked section analysis, for common reinforcement ratios
and modular ratios, are found in Table A6 of Appendix A,

The beam of Example 3.1 is subject to a bending moment M = 90 fi-kips {rather than 45 fi-
kips as previouslv). Calculate the relevant properties and stresses.

SoLvrion.  If the section were to remain uncracked. the tensile stress in the concrete would
now be twice its previous value, that is, 864 psi, Since this exceeds by far the modulus of
rupture of the given concrete (475 psi), cracks will have formed and the analysis must be
adapted appropriately. Equation (3.5), with the known quantities b, n, and A inserted, gives
the distance to the neutral axis &d = 7.6 in.. or £ = 7.6:23 = 0.33. From Eq. (3.13),
J=1—=0333 = .89, With these values the steel stress is oblained from Eqg, (38)as f, =
22,300 psi. and the maximum concrete stress from Eq. (3,800 as /. = 1390 psi.

Comparing the results with the pertinent values for the same beam when subject 10 one-
half the moment, as previcusly calculated. one notices that (1) the neutral plane has migrated
upward so that its distance from the top fiber has changed from 13.2 to 7.6 in: (2) cven
though the bending moment has only been doubled, the steel stress has increased from 2870
o 22 300 psi, or about 7.8 fmes, and the concrete compression stress has increased from
484 to 1390 psi, or 2.9 times; (3) the moment of inertia of the cracked transformed section
is easily computed 1o be 5,910 in', compared with 14,740 in* for the uncracked section. This
affects the magnitude of the deflection, as discussed in Chapter 6. Thus, it is seen how rad-
ical is the influence of the formation of tension cracks on the behavior of reinforced con-
crete beams.

c.

Flexural Strength

It is of interest in structural practice to calculate those stresses and deformations that
occur in a structure in service under design load. For reinforced concrete beams, this
can be done by the methods just presented. which assume elastic behavior of both
materials. It is equally, if not more, important that the structural engineer be able o
predict with satisfactory accuracy the strength of a structure or structural member. By
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making this strength larger by an appropriate amount than the largest loads that can be
expected during the lifetime of the structure, an adequate margin of safety is assured.
In the past, methods based on elastic analysis, like those just presented or variations
thereof, have been used for this purpose. It is clear, however, that at or near the ulti-
mate load. stresses are no longer proportional to strains. In regard to axial compres-
sion, this has been discussed in detail in Section 1.9, and in regard to bending. it has
been pointed out that at high loads, close to failure, the distribution of stresses and
strains is that of Fig. 3.2f rather than the elastic distribution of Fig. 3.2¢. More realis-
tic methods of analysis. based on actual inelastic rather than assumed elastic behavior
of the materials and on results of extremely extensive experimental research, have
been developed to predict the member strength. They are now used almost exclusively
in structural design practice.

If the distribution of concrete compressive stresses at or near ultimate load (Fig.
3.2f) had a well-defined and invariable shape—parabolic, trapezoidal, or otherwise—
it would be possible to derive a completely rational theory of bending strength, just as
the theory of elastic bending with its known triangular shape of stress distribution
(Figs. 3.1h and 3.2¢ and ¢) is straightforward and rational. Actually, inspection of Figs.
2.3, 2.4, and 2.6, and of many more concrete stress-strain curves that have been pub-
lished, shows that the geometrical shape of the stress distribution is quite varied and
depends on a number of factors, such as the eylinder strength and the rate and dura-
tion of loading. For this and other reasons, a wholly rational flexural theory for rein-
forced concrete has not yet been developed (Refs. 3.1 to 3.3). Present methods of
analysis, therefore, are based in part on known laws of mechanics and are supple-
mented, where needed. by extensive test information.

Let Fig. 3.6 represent the distribution of internal stresses and strains when the
beam is about to fail. One desires a method to calculate that moment M, {nominal
moment) at which the beam will fail either by tension yielding of the steel or by crush-
ing of the concrete in the outer compression fiber. For the first mode of failure, the cri-
terion is that the steel stress equal the yield point, f, = f.. It has been mentioned before
that an exact criterion for concrete compression failure is not yet known, but that for
rectangular beams strains of 0.003 to 0.004 have been measured immediately preced-
ing failure. If one assumes, usually slightly conservatively, that the concrete is about
to crush when the maximum strain reaches -, = 0,003, comparison with a great many
tests of beams and columns of a considerable variety of shapes and conditions of load-
ing shows that a satisfactorily accurate and safe strength prediction can be made
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(Ret. 3.4). In addition to these two criteria (vielding of the steel at a stress of f, and
crushing of the concrete at a strain of 0.003), it is not really necessary to know the exact
shape of the concrete stress distribution in Fig. 3.6. What is necessary is to know, for a
given distance ¢ of the neutral axis, (1) the total resultant compression force C in the
concrete and (2) its vertical location, Le., its distance from the outer compression fiber.

In a rectangular beam, the area that is in compression is be, and the total com-
pression force on this area can be expressed as C = f be, where f, is the average
compression stress on the area be. Evidently, the average compressive stress that can
be developed before failure occurs becomes larger, the higher the cylinder strength f)
of the particular concrete. Let

ful.'
=— 314
f G194
Then
C = f:bc (3.15)

For a given distance ¢ to the neutral axis. the location of C can be defined as some frac-
tion - of this distance. Thus, as indicated in Fig. 3.6, for a concrete of given strength
it is necessary o know only - and - to completely define the effect of the concrete
COMPIessive siresses,

Extensive direct measurements, as well as indirect evalvations of numerous
beam tests, have shown that the following values for - and - are satisfactorily accu-
rate (see Ref, 3.5, where - is designated as &;&; and - as &)

- equals 0.72 for £ = 4000 psi and decreases by 0,04 for every 1000 psi above
4000 up to BODO psi. For /7 = 8000 psi, - = 0.56.

- equals 0.425 for £ = 4000 psi and decreases by 0,025 for every 1000 psi above
4000 up to 8000 psi. For £ = 8000 psi, - = 0,325,

The decrease in - and - for high-strength concretes is related to the fact that such con-
cretes are more brittle; Le., they show a more sharply curved siress-strain plot with a
smaller near-horizontal portion {see Figs, 2.3 and 2.4). Figure 3.7 shows these simple
relations,

If this experimental information is accepted, the maximum moment can be cal-
culated from the laws of cquilibrium and from the assumption that plane cross sections
remain plane. Equilibrium requires that

C=T o  fibc=Af, (3.16)

Also, the bending moment. being the couple of the forces C and T, can be written as
either

M=T:=Af,d~- ¢ (317
or
M=C:= . fbed— - (3.18)

For failure initiated by yielding of the tension steel. f, = f,. Substituting this
value in Eq. (3.16). one obtains the distance to the neutral axis
At

C o= b {3.19a)
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Alternatively, using A, = - bd., the neutral axis distance is
S (3.19h)
€= 3
) JrL'

giving the distance tw the neutral axis when tension failure occurs. The nominal
moment M, is then obtained from Eq. (3.17) with the value for ¢ just determined, and
fo = [ that is,

; Sy
M, = fhd” 1 — —

{3.200)
With the specific, experimentally obtained values for - and - given previously, this
becomes

M, = fbd* 1 — 0.59 % (3.20h)

0

If. for larger reinforcement ratios, the steel does not reach yield at failure, then
the strain in the concrete becomes - |, = 0.003, as previously discussed. The sieel stress
Ji» not having reached the yield point, is proportional to the steel strain - : i.e., accord-
ing to Hooke's Taw,

_ﬂ = '.l.'Ei

From the strain distribution of Fig. 3.6, the steel strain - | can be expressed in terms of
the distance ¢ by evaluating similar triangles, after which it is seen that

d—c

f_. = 'JrE.‘ (3.21)

i
Then, from Eq. (3.16),
d -«

fhe=A, E, (3.22)
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EXAMPLE 3.3

and this quadratic may be solved for ¢, the only unknown for the given beam. With both
¢ and f, known, the nominal moment of the beam. so heavily reinforced that failure
oceurs by crushing of the concrete, may be found from either Eq. (3.17) or Eqg. (3.18).

Whether or not the steel has yielded at failure can be determined by comparing
the actual reinforcement ratio with the balanced reinforcement ratio - . representing
that amount of reinforcement necessary for the beam to fail by crushing of the con-
crete at the same load that causes the steel to vield. This means that the neutral axis
must be so located that at the load at which the steel starts yielding, the concrete
reaches its compressive strain limit - . Correspondingly, setting f, = f, in Eq. (3.21)
and substituting the yield strain - _ for f, E,, one obtains the value of ¢ defining the
unique position of the neutral axis corresponding to simultaneous crushing of the con-
crete and initiation of vielding in the steel,

c=—"d (3.23)

Substitting that value of ¢ into Eq. (3.16), with A f, = - bdJ,, one obtains for the bal-
anced reinforcement ratio '

- =j—f— " (3.24)

Determing the nominal moment M, at which the beam of Examples 3.1 and 3.2 will fail.

Sovvrion.  For this beam the reinforcement ratio - = A bd = 237 (10 x 23) = 0.0103.
The balanced reinforcement ratio is found from Eq. (3.24) 1o be (L0284, Since the amount of
steel in the beam is less than that which would cause failure by crushing of the concrete, the
beam will fail in tension by yielding of the steel. Its nominal moment, from Eq. (3.208), is

M, = 0.0103 » 60.000 x 10 % 23" [ — (.59 W
= 2.970,000 in-1b = 248 fi-kips

When the beam reaches M, the distance to its neutral axis, from Eq. (3.1958), is

00103 X 60,000 X 23
T TTT0.72 % 4000 -

494

It is interesting to compare this result with those of Examples 3.1 and 3.2, In the
previous calculations. it was found that at low loads. when the concrete had not yet
cracked in tension, the neutral axis was located at a distance of 13.2 in. from the com-
pression edge: at higher loads. when the tension concrete was cracked but stresses
were still sufficiently small to be elastic, this distance was 7.6 in. Immediately before
the beam fails, as has just been shown, this distance has further decreased to 4.9 in,
For these same stages of loading, the stress in the steel increased from 2870 psi in the
uncracked section, to 22,300 psi in the cracked elastic section. and to 60,000 psi at the
nominal moment capacity. This migration of the neutral axis toward the compression
edge and the increase in steel stress as load is increased is a graphic illustration of the
differences between the various stages of behavior through which a reinforced con-
crete beam passes as its load is increased from zero to the value that causes it to fail,
The examples also illustrate the fact that nominal moments cannot be determined
accurately by elastic calculations.
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DesiGN OF TENSION-REINFORCED RECTANGULAR BEAMS

For reasons that were explained in Chapter |, the present design of reinforced concrete
structures is based on the concept of providing sufficient strength to resist hypotheti-
cal overloads. The neminal strength of a proposed member is calculated, based on the
best current knowledge of member and material behavior. That nominal strength is
modified by a strength reduction factor - . less than unity, to obtain the design
strength, The required strength, should the hypothetical overload stage actually be
realized, is found by applying load factors -, greater than unity, to the Ioads actually
cxpected. These expected service loady include the calculated dead load, the calcu-
lated or legally specified live load, and environmental loads such as those due to wind,
seismic action, or iemperature, Thus reinforced concrete members are proportioned so
that, as shown in Eq. (1.5},

M, = M,
Plrg' Pﬂl
VHE' V:r

where the subscripts n denote the nominal strengths in flexure, thrust, and shear respec-
tively, and the subscripts # denote the factored load moment, thrust, and shear, The
strength reduction factors - normally ditfer, depending upon the tvpe of strength to be
calculated, the importance of the member in the structure, and other considerations
discussed in detail in Chaper 1,

A member proportioned on the basis of adequare strength at a hypothetical
overload stage must also perform in a satisfactory way under normal service load con-
ditions. In specific terms, the deflection must be limited o an acceptable value, and
concrete tensile cracks, which inevitably occur, must be of narrow width and well dis-
tributed throughout the tensile zone, Therefore, after proportioning for adequate
strength, deflections are calculated and compared against limiting values {or otherwise
controlled), and crack widths limited by specific means, This approach 1o design,
referred to in Europe, and to some extent in ULS. practice, as fimit sfates design, is the
basis of the 2002 ACI Code, and it is the approach that will be followed in this and
later chapters.

a. Equivalent Rectangular Stress Distribution

The method presented in Section 3.3¢ for caleulating the flexural strength of reinforced
concrere beams, derived from basic concepts of structural mechanics and pertinent
experimental research information, also applies 1o situations other than the case of rec-
tangular beams reinforced on the tension side. It can be vsed and gives valid answers
for beams of other cross-sectional shapes, reinforced in other manners, and for mem-
bers subject not only 1o simple bending but also to the simultaneous action of bending
and axial force (compression or tension), However, the pertinent equations for these
more complex cases become increasingly cumbersome and lengthy, What is more
important, it becomes increasingly difficult for the designer 1o visualize the physical
basis for the design methods and formulas: this could lead 1o a blind reliance on for-
mulas, with a resulting Iack of actual understanding, This is not only undesirable on
general grounds but, practically, is more likely o lead 1o numerical errors in design
work than when the designer at all times has a clear picture of the physical sitwation in
the member being dimensioned or analyzed. Fortunately, it is possible, essentially by a
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FIGURE 3.8

Actual and equivalent
rcctangular siress
distributions at ultimate load.

conceptual trick, to formulate the strength analysis of reinforced concrete members in
a different manner, which gives the same answers as the general analysis just devel-
oped but which is much more easily visualized and much more easily applied to cases
of greater complexity than that of the simple rectangular beam. Its consistency is
shown, and its application to more complex cases has been checked against the results
of a vast number of tests on a great variety of types of members and conditions of load-
ing (Ref. 3.4).

It was noted in the preceding section that the actual geometrical shape of the
concrete compressive stress distribution varies considerably and that. in fact, one need
not know this shape exactly, provided one does know two things: (1) the magnitude C
of the resultant of the concrete compressive stresses and (2) the location of this resul-
tant. Information on these two guantities was obtained from the results of experimen-
tal research and expressed in the two parameters - and - .

Evidently, then. one can think of the actual complex stress distribution as
replaced by a fictitious one of some simple geometric shape, provided that this ficti-
tious distribution results in the same total compression force C applied at the same
location as in the actual member when it is on the point of failure. Historically, a num-
ber of simplified, fictitious equivalent stress distributions has been proposed by inves-
tigators in various countries. The one generally accepted in this country, and increas-
ingly abroad, was first proposed by C. 5. Whitney (Ref. 3.4) and was subsequently
elaborated and checked experimentally by others (see. for example, Refs. 3.5 and 3.6).
The actoal stress distribution immediately before failure and the fictitious equivalent
distribution are shown in Fig. 3.8.

It is seen that the actual stress distribution is replaced by an equivalent one of
simple rectangular outline. The intensity - f of this equivalent constant stress and its
depth @ = - ;¢ are easily calculated from the two conditions that (1) the total com-
pression force C and (2) its location, 1.e.. distance from the top fiber, must be the same
in the equivalent rectangular as in the actual stress distribution. From Fig. 3.8q and b
the first condition gives

C= feb= fab from which =

=N

"
|
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TABLE 3.1
Concrete stress block parameters
!, psi
=4000 5000 6000 7000 =8000
0,72 0.68 .64 0.60 0.36
- 0.425 0.400 0375 0.350 0.325
=2 0.85 (.80 0.75 (.70 0.65
=y 0.85 (.85 0.85 (.86 {0.86
With a = - ¢, this gives - = . -~ |, The second condition simply requires that in the
equivalent rectangular stress block, the force © be located at the same distance - ¢
from the top fiber as in the actual distribution. It follows that - | = 2.,

To supply the details, the upper two lines of Table 3.1 present the experimental
evidence of Fig. 3.7 in tabular form. The lower two lines give the just-derived param-
eters - and - for the rectangular stress block. Itis seen that the stress intensity factor
- is essentially independent of {7 and can be taken as 0.85 throughout. Hence, regard-
less of 7, the conerete compression force at failure in a rectangular beam of width b is

C = 085f: ab {3.25)

Also, for the common concretes with £ = 4000 psi, the depth of the rectangular stress
block is a = (L.85¢, ¢ being the distance to the neutral axis. For higher-strength con-
cretes, this distance is ¢ = - ¢, with the - | values shown in Table 3.1, This is expressed
in ACI Code 10.2,7.3 as follows: - | shall be taken as (.85 for concrete strengths up o
and including 4000 psi: for strengths above 4000 psi. - | shall be reduced continuously
ata rate of 0,03 for each 1000 psi of sirength in excess of 4000 psi, but - | shall not be
taken less than 0.63. In mathematical terms, the relationship between - | and f; can be
expressed as
- — 4000

o = (L85 — (.05 IW and 0.65=., =085 (3.26)
The equivalent rectangular stress distribution can be used for deriving the equations
that have been developed in Section 3.3c. The failure criteria, of course. are the same
as before: yielding of the steel at f, = f, or crushing of the concrete ar -, = 0.003.
Because the rectangular stress block is easily visualized and its geometric properties
are extremely simple. many calculations are carried out directly without reference to
formally derived equations, as will be seen in the following sections,

Balanced Strain Condition

A reinforcement ratio -, producing balanced strain conditions can be established
based on the condition that, at balanced failure, the steel strain is exactly equal to -,
when the strain in the concrete simultaneously reaches the crushing strain of -, =
0,003, Referring to Fig., 3.6,

c=—2 g (3.27)
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which is seen to be identical to Eq. (3.23). Then, from the equilibrium requirement that
C=T

. pr-l- bur = n.gﬁffﬂb = 0‘85 ]_f,n b-t"

from which

, = 085 ]j—
f_‘r u + ‘v

This is easily shown to be equivalent to Eq. (3.24).

(3.28)

Underreinforced Beams

A compression failure in flexure, should it occur, gives little if any warning of distress,
while a tension failure, initiated by yielding of the steel, typically is gradual. Distress
is obvious from observing the large deflections and widening of concrete cracks asso-
ciated with yielding of the steel reinforcement, and measures can be taken to avoid
total collapse. In addition, most beams for which failure initiates by yielding possess
substantial strength based on strain-hardening of the reinforcing steel, which is not
accounted for in the calculations of M,

Because of these differences in behavior, it is prudent to require that beams be
designed such that failure, if it occurs, will be by yielding of the steel, not by crush-
ing of the concrete. This can be done. theoretically, by requiring that the reinforcement
ratio - be less than the balance ratio - , given by Eq. (3.28).

In actual practice, the upper limit on - should be below -, for the following rea-
sons: (1) for a beam with - exactly egual to -, the compressive strain limit of the con-
crete would be reached. theoretically, at precisely the same moment that the steel
reaches its yield stress, without significant yielding before failure, (2) material prop-
erties are never known precisely, (3) strain-hardening of the reinforcing steel, not
accounted for in design, may lead to a brittle concrete compression failure even though
- may be somewhat less than - ;. (4) the actual steel area provided, considering stan-
dard reinforcing bar sizes, will always be equal to or larger than required, based on
selected reinforcement ratio -, tending toward overreinforcement, and (5) the extra
ductility provided by beams with lower values of - increases the deflection capability
substantially and, thus, provides waming prior to failure.

ACI Code Provisions for Underreinforced Beams

While the nominal strength of a member may be computed based on principles of
mechanics, the mechanics alone cannot establish safe limits for maximum reinforce-
ment ratios. These limits are defined by the ACI Code. The limitations take two forms.
First, the Code addresses the minimum tensile reinforcement strain allowed at nominal
strength in the design of beams. Second, the Code defines strength reduction factors
that may depend on the tensile strain at nominal strength. Both limitations are based on
the net tensife strain -, of the reinforcement farthest from the compression face of the
concrete at the depth d,. The net tensile strain is exclusive of prestress, temperature, and
shrinkage effects. For beams with a single layer of reinforcement, the depth to the cen-
troid of the steel d is the same as d,. For beams with multiple layvers of reinforcement,
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d, is greater than the depth to the centroid of the reinforcement o, Substituting o, for o
and -, for - | in Eq. (3.27). the net tensile strain may be represented as
d,— ¢
= — (3.29)
¢

Then based on Eq. (3.28), the reinforcement ratio to produce a selected value of net
tensile strain is

- fo

= (.85 , {3.30a)

f:l. ‘u + T

To ensure underreinforced behavior, ACI Code 10,3.5 establishes a minimum net
tensile strain -, at the nominal member sirength of 0004 for members subjected o
axial loads less than 0.10 _.‘:,’AR. where A, is the gross area of the cross section. By way
of comparison -, the steel strain at the balanced condition, is 0.00207 for £, = 60,000
psi and 0.00259 for f, = 75,000 psi. '

Using -, = 0.004 in Eq. (3.304) provides the maximum reinforcement ratio
allowed by the ACI Code for beams.

.ure T

o = 0.85 | ——— 3.30b
e Lo, 0004 (3.300)

The maximum reinforcement ratio is exact for beams with a single layer of rein-
forcement and slightly conservative for beams with multiple layers of reinforcement
where o, is greater than o, Because - = (1004 ensures that steel is yielding in tension,
[, = [, at failure, and the nominal flexural strength (referring to Fig. 3.11) is given by

M, = Af, d— % (3.31)
where
AT,
- 3.32
T 085 b (3.32)

The ACI Code further encourages the use of lower reinforcement ratios by
allowing higher strength reduction factors in such beams. The Code defines a rension-
controlled member as one with a net tensile strain greater than or equal to 0.005. The
corresponding strength reduction factor is - = 0.9." The Code additionally defines a
compression-controfled member as having a net tensile strain of less than 0.002, The
strength reduction factor for compression-controlled members is 0.635. A value of (1.70
may be used if the members are spirally reinforced. A value of - | = 0,002 corresponds
approximately to the yield strain for steel with £, 60,000 psi yield strength. Between
net tensile strains of 0,002 and 0.003, the strength reduction factor varies linearly, and
the ACI Code allows a linear interpolation of - based on - . as shown in Fig. 3.9,

Calculation of the nominal moment capacity frequently involves determination
of the depth of the equivalent rectangular stress block a. Since ¢ = a-- |, it is some-
times more convenient to compute ¢ o ratios than the net tensile strain, The assump-
tion that plane sections remain plane ensures a direct correlation between net tensile
strain and the ¢ d ratio, as shown in Fig. 3.10,

P The selectiom of 2 net ensile sirain of G005 is intended o encompass the vield steain of all reinforeing siee] incheding high-strength rods and

prestessing lendons,
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FIGURE 3.9 Compression Transition Tension
Variation of strength controlied zone controlled
reduction factor with net
tensile strain. B B

= (1,80
Spiral ¢
- .
¢ =070 Other
= 0,483 + 83.3¢
b= 0.65 : :
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Met tensile strain
FIGURE 3.10 €, = 0.003 €, = 0.003 €, = 0.003
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c
dy
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e 0.003 _ £ 0.003 _ £ 0.003 _
d; 0003 +0005 0°7° 4 ~ G003 +o0004  U*® o ~ 0003+ oooe 0600
{a) {b) (c)
Tension-controlled Minimum net tensile Compression-controlled
member strain for flexural member member

EXAMPLE 34

Uzing the equivalent rectangular stress distribution, directly calculate the nominal strength
of the beam previously analyzed in Example 3.3,

SoruTion,  The distribution of stresses, internal forces, and strains 15 as shown in Fig. 3.11.
The maximum reinforcement ratio is calculated from Eq. (3.308) as
400 0.003

- 85 - 0.02
mar = 0.85 X 085 0 000 0.003 + 0,004 0206

and comparison with the actual reinforcement ratio of 0.0103 confirms that the member is
underreinforced and will fail by vielding of the steel. The depth of the equivalent stress
block is found from the equilibrium condition that C = 7. Hence 0.85f’ab = Af,, or
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b —| i

0.85 f:
N
) ]
1_ ; a-fie
d L ‘
-
A,—te—eo ol t — _—
T= A,
e
(a) (b) (c)

a = 237 = 60,000- (085 > 4000 = 1) = 4,18, The distance to the neutral axis, by defini-
tion of the rectangular siress block, is ¢ = @+ | = 4.18 (.85 = 4.92. The nominal moment is

M, =Af, d— % = 237 % 60,000 .23 — 2.00 = 2,970,000 in-Ib = 248 fi-kips

The results of this simple and direct numerical analysis, based on the equivalent
rectangular stress distribution, are identical with those previously determined from the
general strength analysis described in Section 3.3¢,

It is convenient for everyday design to combine Egs. (3.31) and (3.32) as fol-
lows, Noting that A, =+ bd, Eq. (3.32) can be rewritten as

Jd
i 085, (3.33)

This is then substituted into Eq. (3.31) to obtain

M, = fbd® 1 — 059 % (3.34)
which is identical to Eq. (3.208) derived in Section 3.3¢. This basic equation can be
simplified further as follows:

M, = Rbd® (3.35)
in which

R=-f-1~- ﬂ.ﬁ@i- (3.36)
fe
The flexural resistance factor R depends only on the reinforcement ratio and the
strengths of the materials and is easily tabulated. Tables A 5a and A 5b of Appendix A
give R values for ordinary combinations of steel and concrete and the full practical
range of reinforcement ratios.
In accordance with the safety provisions of the ACI Code, the nominal flexural
strength M| is reduced by imposing the strength reduction factor - to obtain the design
strength:

o

5 i3.37)

M,=-AJ, d-
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or, alternatively,
M, = fbd? 1~ 059" (3.38)

or
M, = Rbd* (3.39)

Caleolate the design moment capacity for the beam analyzed in Example 3.4,

SoLuvnox,  For a distance to the neutral axis of ¢ = 492, -, = 0.003(23 — 492) 492 =
0.011 from BEq. (3.28). -, 0005, s0 - = 0.90 and the design capacity is

M, = 0.9 % 248 = 223 fi-kips

Minimum Reinforcement Ratio

Another mode of failure may oceur in very lightly reinforced beams. If the flexural
strength of the cracked section is less than the moment that produced cracking of the
previously uncracked section, the beam will fail immediately and without warning of
distress upon formation of the first flexural crack. To ensure against this type of fail-
ure, a lewer fimit can be established for the reinforcement ratio by equating the crack-
ing moment, computed from the concrete modulus of rupture (Section 2.9), to the
strength of the cracked section.

For a rectangular section having width b, total depth fr. and efTective depth d (see
Fig. 3.2h), the section modulus with respect to the tension fiber is bk’ 6. For typical
cross sections, it is satisfactory to assume that - = 1.1 and that the internal lever arm
at flexural failure is 0,95, If the modulus of rupture is taken as f, = 7.5 f,, as usual,
then an analysis equating the cracking moment to the flexural strength resulls in

1.8- f!
Apmin = Id (3.40a)
£y

This development can be generalized to apply o beams having a T cross section (see
Section 3.8 and Fig. 3.15). The corresponding equations depend on the proportions of
the cross section and on whether the beam is bent with the flange (slab) in tension or
in compression. For T beams of typical proportions that are bent with the flange in
compression, analysis will confirm that the minimum steel area should be

27 f
A.‘.‘.Hu’.ll = - }[
Iy

where b, is the width of the web, or stem. projecting below the slab. For T beams that
are bent with the flange in tension, from a sumilar analysis, the minimum steel area is

6.2 f.
62 f b

ki

byd (3.40b)

A_'.'.url'n = i (3 4“(‘}
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The ACI Code requirements for minimum steel area are based on the results just
discussed, but there are some differences. According to ACI Code 10.5, at any section
where tensile reinforcement is required by analysis. with some exceptions as noted
below. the area A, provided must not be less than

3 f 200b,d
A.f_nﬂ'.ll = f bu'd =

¥ ¥

(3.41)

This applies to both positive and negative bending sections, The inclusion of the addi-
tional limit of 2006, 4 f, is merely for historical reasons; it happens to give the same
minimum reinforcement ratio of 0.005 that was imposed in earlier codes for then-com-
mon material strengths, Note that in Eg. (3.41) the section width b, is used; it is under-
stood that for rectangular sections, b, = b Note further that the ACI coefficient of 3
is a conservatively rounded value compared with 2.7 in Eq. (3.406) for T beams with
the flange in compression, and is very conservative when applied to rectangular beam
sections, for which a rational analysis gives 1.8 in Eq. (3.40a). This probably reflects
the view that the minimum steel for the negative bending sections of a continuous T
beam (which are, in effect, rectangular sections, as discussed in Section 3.8¢) should
be no less than for the positive bending sections, where the moment is generally
smaller.

ACI Code 10.5 treats statically determinate T beams with the flange in tension
as a special case, for which the minimum steel area is equal to or greater than the value
given by Eg. (3.41) with b, replaced by either 2h, or the width of the flange,
whichever is smaller.

Note that ACI Code Eq. (3.41) is conveniently expressed in terms of a minimum
tensile reinforcement ratio -, by dividing both sides by b d.

According to ACI Code 10.5, the requirements of Eq. (3.41) need not be imposed
if, at every section, the area of tensile reinforcement provided is at least one-third
greater than that required by analysis. This provides sufficient reinforcement for large
members such as grade beams, where the usval equations would require excessive
amounts of steel.

For structural slabs and footings of uniform thickness, the minimum area of ten-
sile reinforcement in the direction of the span is that required for shrinkage and tem-
perature steel (see Section 13.3 and Table 13.2), and the above minimums need not be
imposed. The maximum spacing of such steel is the smaller of 3 times the total slab
thickness or 18 in.

Examples of Rectangular Beam Analysis and Design

Flexural problems can be classified broadly as analvsis problems or design problems.
In analysis problems, the section dimensions, reinforcement, and material strengths
are known, and the moment capacity is required. In the case of design problems, the
required moment capacity is given, as are the material strengths, and it is required to
find the section dimensions and reinforcement. Examples 3.5 and 3.6 illustrate analy-
sis and design, respectively.

Flexural strength of a given member. A rectangular beam has width 12 in, and effective
depth 17.5 in. It is reinforced with four No. 9 (No. 29} bars in one row. If f, = 60,000 psi
and £ = 4000 psi, what is the nominal flexural strength, and what is the maximum moment
that can be utilized in design. according to the ACI Code?
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SorvTion.  From Table A2 of Appendix A. the area of four No. 9 (No. 29) bars is 4.00 in”,
Thus, the actual reinforcement ratio is - = 4.00.(12 = 17.5) = 0.00%). This is below the
maximum value from Eq, (3.300) of

4 0.003

e = 085 X085 — -

—— = {0206
60 0003 + 0.004

so failure by tensile yielding would be obtained. For this underreinforced beam, from

Fq. (3.32).

400 X 60 ,
s xax iy
and, from Eq. (3.31),
5.88
M, = 4.00 X 60 175 = == = 3490 in-kips

the depth to the neutral axis is ¢ = a-- (= 5.88 0.85 = 6,92, The net wensile strain is -, =

Jdd = cpe=0003 % (175 - 6.92) 692 = 0.00458 - 0.004 but less than 0.005; thus, the

strength reduction factor must be adjusted. Using a lincar interpolation from Fig, 3.9,
= (1.87, and the design strength is taken as

- M, = 087 x 3490 = 3040 in-kips
The ACI Code limits on the reinforcement ratio,
ey = L0206
© o _ 34000 200
. 60,000 60,000

are satisfied for this beam,

= 0.0033

EXAMPLE 3.6

Concrete dimensions and steel area to resist a given moment. Find the cross section
of concrete and area of steel reguired for a simply supported rectangular beam with a span
of 15 ft that is to carry a computed dead load of [.27 kips/ft and a service live load of
2.15 kips/ft, Material strengths are £ = 4000 psi and £, = 60,000 psi,

Sorvmon,  Load factors are first applied 1o the given service loads 1o obtain the factored
load for which the beam is to be designed, and the corresponding moment:

w, = 1.2 % 1.27 + 1.6 % 2.15 = 4.96 kips- ft
| . _—
M, = 2 X 496 X 155 12 = 1670 in-kips

The concrete dimensions will depend on the designer’s choice of reinforcement ratio. To
minimize the conerele section, it is desirable o select the maximum permissible reinforee-

ment ratio. To maintain - = 0.9, the maximum reinforcement ratio corresponding to a net
tensile strain of 0.005 will be selected (see Fig, 390 Then, from Eq. (3.30a)
A L 4 0.003
- =08 T =085 X085 —  —— = (L0IE]
'f, .+ 0.005 60 0.003 + 0.005

Using Eq. (3.300) gives - = (L0206, but would require a lower strength reduction factor,
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Setting the required flexural strength equal to the design strength from Eq. (3.38), and sub-
stituting the selected values for - and material strengths,

M = M,

0.0181 X 60

1670 = 0,90 = 0.0181 = 60bd”. 1 — 0.59 T

from which
bdd? = 2048} in’

A beam with width & = 10 in. and « = [4.3 in. will satisfy this requirement. The required steel
arca is found by applying the chosen reinforcement ratio to the required concrete dimensions;

A = 00181 ® 10 x 14.3 = 259 i’

Two No, 10 (No. 32 hars provide 2,54 in® and is very close 1o the required area,

Assuming 2.5 in. concrete cover from the centroid of the bars, the required total depth is
I = 168 in. In actual practice, however, the concrete dimensions b and h are always rounded
upward to the nearest inch, and often to the nearest multiple of 2 in. (see Section 3.5). The
actual o is then found by subtracting the required conerete cover dimension from fi. For the
present example, b = 10 in. and i = 18 in. will be selected, resulting in effective depth d =
15.5 in, Improved cconomy then may be possible, refining the steel area based on the actual,
larger, effective depth. One can obtain the revised steel requirement directly by solving Eq.
(3.38) for -, with - M, = M . A quicker solution can be obtained by iteration, First a rea-
sonable value of ¢ is assumed. and A, is found from Eq. (3.37). From Eq. (3.32) a revised
estimate of & is obtained, and A, is revised, This method converges very rapidly. For exam-
ple. assume & = 5 in. Then

N 1670
"T090 % 60155 ~ 2.3

- = 2.38 in’

Checking the assumed «:

2.38 X 60

_— = 201
4= 85 xax 10 rA0in

This is close enough to the assumed value that no further calculation is required. The required
steel area of 2.38 in® could be provided using three No. 8 (No. 25) bars, but for simplicity
ol construction. two No. [0 (No. 32) bars will be used as before.

A somewhat larger beam cross section using less steel may be more economical, and will
tend to reduce deflections. As an alternative solution, the beam will be redesigned with a
lower remntoreement ratio of - = 0.60- = 0.60 > 0.0206 = 0.0124, Setting the required
strength equal 1o the design strength [Eq. (3.38)] as before:

0.0124 > 60

1670 = 0.90 > 0.0124 x 60bd” 1 — 0.59 1
and
bd? = 2800 in’
A beam with b = 10 in, and o = 16,7 in. will meet the requirement, for which

A= 00124 10 x 167 = 207 in’

Two No. % (No. 29) bars are almost sufficient, providing an area of 2.00 in”, If the total con-
crete height is rounded upward to 20 in., a 17.5 in. effective depth resulis, reducing the
required steel area to 1,96 in’, Two No, 9 (No. 29) bars remain the best choice.
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EXAMPLE 3.7

It i apparent that an infinite number of solutions to the stated problem are possi-
ble, depending upon the reinforcement ratio selected. That ratio may vary from an
upper limit of - to a lower limit of 3- f f, = 200 f, for beams, according to the
ACI Code. To compare the two solutions (using the theoretical dimensions, unrounded
for the comparison, and assuming & is 2.5 in. greater than ¢ in each case). increasing
the concrete section area by 14 percent achieves a steel saving of 20 percent. The sec-
ond solution would certainly be more economical and would be preferred, unless beam
dimensions must be minimized for architectural or functional reasons. Economical
designs will typically have reinforcement ratios between 0.50-  and 075 .

There is a type of problem., occurring frequently. that does not fall strictly into
either the analysis or design category. The concrete dimensions are given and are
known to be adequate to carry the required moment. and it is necessary only to find
the steel area. Typically. this 1s the situation at critical design sections of continuous
beams, in which the concrete dimensions are often kept constant, although the steel
reinforcement varies along the span according to the required flexural resistance,
Dimensions b, 4, and & are determined at the maximum moment section, usually at
one of the supports. At other supports, and at midspan locations, where moments are
usually smaller, the concrete dimensions are known to be adequate and only the ten-
sile steel remains to be found. An identical situation was encountered in the design
problem of Example 3.6, in which concrete dimensions were rounded upward from
the minimum required values, and the required steel area was to be found. In either
case, the iterative approach demonstrated in Example 3.6 is convenient,

Determination of steel area. Using the same concrete dimensions as were used for the
second solution of Example 3.6 (b = 10 in., o = 17.5in., and i = 20in.} and the same mate-
rial strengths, find the steel area required to resist a moment M, of 1300 in-kips.

SoLvrion,  Assume o = 4.0 in. Then

1300
A= = 1.55in’
©T 090 X 60-17.5 — 2.0- '
Checking the assumed
1.55 = a0 ,
4 gasxax g ZTin
Next assume g = 2.6 in. and recalculate 4
1300 .
A, = 149in’

T 090 % 60175 — 13

No further iteration is required. Use A, = 1.49 in?. Two No. 8 (No. 25) bars will be used.
A check of the reinforcement ratio shows - - - and - = 0.9,

PN

EXAMPLE 3.8

As seen in Example 3.5, the strength reduction factor becomes a variable at high
reinforcement ratios, Example 3.8 demonstrates how the variation in strength reduc-
tion factor atfects the design process.

Determination of steel area and variable strength reduction factor.  Architeciural con-
siderations limit the height of a 200 ft long simple span beam to 16 in., and the width to 12 in.
The following loads and material properties are given: wy = 0.79 kips/ft, w, = 1.65 kips/ft,
f2 = 5000 psi, and f, = 60,000 psi. Determine the reinforcement for the beam.
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SoLuTion.  Calculating the factored loads gives
w, = 1.2 2079 + 1.6 % L.65 = 3.59 kips- ft

3

20
M, = 359 x == = 179 fikips = 2150 in-kips

Assume g = 4.01n, and - = .90, The structural depth is 16 — 2.5 in. = 13.5 in. Calew-
lating A,
M- 2150- (.90

W

= = = 3461 I
T hd-a? 60135 - 20 "

A

Try two No. 10 (No, 32) and one No, @ (No. 29) bar, A, = 3.54 in”,
Check a = 3.54 X 60 {085 ¢ 5 % 12) = 4.16 in. from Eq. (3.32). This is more than
assumedl; therefore, continue o check the moment capacity,

M, = 354 % 60(13.5 — 4.16-2) = 2426 in-kips

Using a - of 090 gives - M, = 2183 in-kips, which is adequate; however, the net tensile
strain must be checked o validate the selection of - = 0.9, In this case ¢ = g | =
4.16-0.80 = 520 in. The ¢ d ratio is 0.385 - 0,375, s0 -, 0.003 is not satisfied. The cor-
responding net wensile strain is

13.5 - 5.2

-, = 0003 D = 0.00479

A value of - | = 0.00479 is allowed by the ACI Code, but only if the strength reduction fac-
tor is adjusted. A linear interpolation from Fig. 3.9 gives - = 088 and M, = M, =

2140 in-kips, which is less than the required capacity. Trv increasing the reinforcement to
three No. 10 (No. 32) bars, A, = 3.81 in®. Repeating the calculations:

381 = 60 )
@085 x5k ABin.
n .
4.48
M, = 381 % 60 13.5 ~ == = 2574 in-kips

0.003-13.5 — 5.60-
o 560
= (L4583 + §3.3 ¥ 0.00423 = 0,835

M, = M, = 0.835 % 2574 = 2150 in-kips

= (LO0423

which meets the design reguirements.

In actwality, the first solution deviates less than 1 percent from the desired value and
would likely be acceptable. The remaining portion of the example demonstrates the design
implications of requiring a variable strength reduction factor when the net tensile strain falls
between 0.005 and 0.004. In this example, the reinforcement increased nearly 8 percent, vet
the design moment capacity - M, only increased 0.5 percent due to the decreasing strength
reduction factor.

In solving these examples, the basic equations have been used to develop famil-
iarity with them. In actual practice, however, design aids such as Table A4 of Appen-
dix A, giving values of maximum and minimum reinforcement ratios. and Table A5,
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providing values of flexural resistance factor R, are more convenient. The example
problems will be repeated in Section 3.5 to demonstrate use of these aids.

g. Overreinforced Beams

According to the ACI Code, all beams are to be designed for yielding of the tension
steel with -, not less than 0.004 and. thus, - = - . Occasionally, however, such as
when analyzing the capacity of existing construction, it may be necessary to calculate
the flexural strength of an overreinforced compression-controlled member, for which
1, is less than f, at flexural failure.

In this case, the steel strain. in Fig. 3.115, will be less than the yield strain, but
can be expressed in terms of the conerete strain -, and the still-unknown distance ¢ to
the neutral axis:

d— ¢

e (3.42)

From the equilibrium requirement that C = 7, one can write
085 f.be= Ebd

Substituting the steel strain from Eq. (3.42} in the last equation, and defining k, = ¢ d,
one obtains a quadratic equation in k, as follows:

E+mbk,—m =0

Here, - = A, bd as usual and m is a material parameter given by
= Eru (3.43
" T 085 e
Solving the quadratic equation for k,,
m
= e 3.44

The neutral axis depth for the overreinforced beam can then easily be found from ¢ =
k,d, after which the stress-block depth @ = - |c. With steel strain - | then computed
from kg, (3.42), and with f, = £ ., the nominal flexural strength is
! a
M,=Af, d~- E (3.45)

The strength reduction factor - will equal (.65 for beams in this range.

DesiGN AIDS

Basic equations were developed in Section 3.4 for the analysis and design of rein-
forced concrete beams, and these were used directly in the examples. In practice, the
design of beams and other reinforced concrete members is greatly facilitated by the
use of aids such as those in Appendix A of this text and in Refs. 3.7 through 3.9, Tables
AL A2 A4 through A7, and Graph ALl of Appendix A relate directly to this chap-
ter, and the student can scan this material to become familiar with the coverage. Other
aids will be discussed, and their use demonstrated. in later chapters.
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Equation (3.39) gives the flexural design strength - M, of an underreinforced
rectangular beam with a reinforcement ratio at or below - . The flexural resistance
factor K, from Eg. (3.36), is given in Table A.5a for lower reinforcement ratios or Table
ALSb for higher reinforcement ratios. Alternatively, R can be obtained from Graph A.1.
For analvsis of the capacity of a section with known concrete dimensions b and d, hav-
ing known reinforcement ratio -, and with known materials strengths, the design
strength - M, can be obtained directly by Eq. {3.39).

For design purposes, where concrete dimensions and reinforcement are to be
found and the factored load moment M, is to be resisted, there are two possible
approaches. One starts with selecting the optimum reinforcement ratio, and then cal-
culating concrete dimensions, as follows:

1. Set the required strength M equal to the design strength - M from Eq. (3.39):
M, = - Rbhd*

2. With the aid of Table A4, select an appropriate reinforcement ratio between -
and - . Often a ratio of about (.60 will be an economical and practical
choice. Selection of - = - for | = 0.005 assures that - will remain equal to 0.90.
For . - . and above - for -, = (L0035, an iterative solution will be necessary.

3. From Table A5, for the specified material strengths and selected reinforcement
ratio, find the flexural resistance factor K. Then

i le
el” = —
R

4. Choose b and  to meet that requirement. Unless construction depth must be lim-
ited or other constraints exist (see Section 12.6), an effective depth about 2 to 3
times the width is often appropriate,

5. Calculate the required steel area

A, = bd

]

Then, referring to Table A2, choose the size and nuwmber of bars, gsiving prefer-
ence 1o the larger bar sizes Lo mimimize placement costs.

6. Refer to Table A.7 to ensure that the selected beam width will provide room Tor
the bars chosen, with adequate concrete cover and spacing. {These points will be
discussed further in Section 3.6.)

The alternative approach starts with selecting concrete dimensions, after which
the required reinforcement is found, as follows:

1. Select beam width b and effective depth d. Then calculate the required R:
M,
R = -
- bd”

2. Using Table A.5 for specified material strengths, find the reinforcement ratio -
* e that will provide the required value of R and vernify the selected value of .
3. Calculate the required steel area

A, = bd

and from Table A.2 select the size and nomber of bars.
4. Using Table A.7. confirm that the beam width is sufficient to contain the selected
reinforcement.
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Use of design aids to solve the example problems of Section 3.4 will be illus-
trated as follows.
EXAMPLE 3.9 Flexural sirength of a given member. Find the nominal flexural strength and design

strength of the beam in Example 3.5, which has b = 12 in, and = 17.5 in. and is reinforced
with four No. 9 {No. 29) bars. Make use of the design aids of Appendix A. Material strengths
are f = 4000 psi and £, = 60.000 psi.

SoLvTion.  From Table A2, four No. 9 (No. 29) bars provide A, = 4.00 in’, and with
b= 12 in and = 17.5 in., the reinforcement ratio 45 - = 4.00-(12 = 17.5) = 0L.0190.
According to Table A4, this is below -, = 0.0206 and above -, = 0.0033. Then from
Table A.5b, with §7 = 4000 psi, f = 60,000 psi, and - = 0.019, the value R = 949 psi is
found, The nominal and design strengths are (with - = (0,86 from Example 3.5) respectively

T

17.5
1000
- M, = 086 = 3400 = 3000 in-kips

M, = Rbd® = 949 » 12 x = 3490 in-kips

as before.,

EXAMPLE 3.10

Concrete dimensions and steel area to resist a given moment. Find the cross section of
concrete and the area of steel required for the beam in Example 3.6, making use of the
design aids of Appendix A. M, = 1670 in-kips. 7 = 4000 psi. and f, = 60.000 psi. Use a
reinforcement ratio of 0.60- .

Sornuvrion,  From Table A4, the maximum reinforcement ratio is -, = 0.0206. For econ-
omy, a value of - = 0.60 . = 0.0124 will be used. For that value, by interpolation from
Table A Sa. the required value of £ is 663, Then

M, 1670 = 1000

- .3
R 000 % 663 Lo00in

bd* =

Concrete dimensions b = 10 in, and = 16.7 in. will satisfy this, but the depth will be
rounded 1o 17.5 in. to provide a total beam depth of 20.0in. It follows that

M, 1670 = 1000
R = — — T = 606 psi
Tbd 090 X 10 X 17.57 P
and from Table ASa, by imterpolation, - = 00112, This leads to a steel requirement of

A, = 000112 % 10 % 17.5 = 1.96 in” as before.

EXAMPLE 3.11

Determination of steel area. Find the steel area required for the beam in Example 3.7,
with concrete dimensions b = 10in, and d = 17.5 in. known (o be adeqguate to carry the fac-
tored load moment of 1300 in-1b. Material strengths are 7 = 4000 psi and f, = 60,000 psi.

SoLUTION.  Note that in cases in which the concrete dimensions are known to be adequate

and only the reinforcement must be found. the iterative method vsed earlier is not required.

The necessary flexural resistance factor is

oM, 1300 X 1000
Shd® 090 x 10 x 1757

R = 472 psi
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According to Table A.5a, with the specified material strengths, this corresponds to a rein-
forcement ratio of - = 0.0085, giving a sieel area of

A, = 00085 X 10 % 175 = 149 in?
as before., Two No. 8 (Moo 25) bars will be used.

The tables and graphs of Appendix A give basic information and are used exten-
sively throughout this text for illustrative purposes. The reader should be aware, how-
ever, of the greatly expanded versions of these tables, plus many other useful aids, that
are found in Refs, 3.7 through 3.9 and elsewhere.

PracTicaL CONSIDERATIONS IN THE DESIGN OF BEAMS

To focus attention initially on the basic aspects of flexural design, the preceding exam-
ples were carried out with only minimum regard for certain practical considerations
that always influence the actual design of beams. These relate to optimal concrete pro-
portions for beams, rounding of dimensions, standardization of dimensions, required
cover for main and auxiliary reinforcement, and selection of bar combinations. Good
judgment on the part of the design engineer is particularly important in translating
from theoretical requirements to practical design. Several of the more important
aspects are discussed here: much additional guidance is provided by the publications
of ACI {Refs. 3.7 and 3.8) and CRSI (Refs. 39to 3.11).

a. Concrete Protection for Reinforcement

To provide the steel with adequate concrete protection against fire and corrosion, the
designer must maintain a certain minimum thickness of concrete cover outside of the
outermost steel. The thickness required will vary, depending upon the type of member
and conditions of exposure. According o ACI Code 7.7, for cast-in-place concrete,
concrete protection at surfaces not exposed directly to the ground or weather should
be not less lhan% in. for slabs and walls and I% in. for beams and columns, If the con-
crete surface is 1o be exposed to the weather or in contact with the ground. a protec-
tive covering of at least 2 in. is required [14 in. for No. 5 (No. 16) and smaller bars].
except that, if the concrete is cast in direct contact with the ground without the use of
forms, a cover of at feast 3 in. must be furnished.

In general, the centers of main flexural bars in beams should be placed 2'3 w3
in. from the top or bottom surface of the beam to furnish at least 13 in. of clear cover
for the bars and the stirrups (see Fig. 3.12) In slabs, 1 in. 1o the center of the bar is
ordinarily sufficient 1o give the rcquircd% in. cover,

To simplify construction and thereby to reduce costs, the overall conerete dimen-
sions of beams, b and h, are almost always rounded upward to the nearest inch, and
often 1o the next multiple of 2 in. As a result, the actoal effective depth o, found by sub-
tracting the sum of cover distance, stirrup diameter, and half the main reinforcing bar
diameter from the wital depth f. is seldom an even dimension. For slabs, the total depth
is generally rounded upward to the nearest 5 in. up to 6 in. in depth. and to the nearest
inch above that thickness. The differences between h and o shown in Fig. 3.12 are not
exact, but are satisfactory for design purposes for beams with No. 3 (No. 10) stirtups
and No. 10 (No. 32) longitudinal bars or smaller, and for slabs using No. 4 (No. 13} or
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smaller bars. If larger bars are used for the main flexural reinforcement or for the stir-
rups, as is frequently the case, the corresponding dimensions are easily calculated.

Recognizing the closer tolerances that can be maintained under plant-control
conditions, ACI Code 7.7.3 permits some reduction in concrete protection for rein-
forcement in precast concrete.

b. Concrete Proportions

Reinforced concrete beams may be wide and shallow, or relatively narrow and deep.
Consideration of maximum material economy often leads to proportions with effec-
tive depth d in the range from about 2 to 3 times the width & {or web width b, for T
beams). However, constraints may dictate other choices and. as will be discussed in
Section 12.6, maximum material economy may not translate into maximum structural
economy. For example, with one-way concrete joists supported by monolithic beams
(see Chapter 18), use of beams and joists with the same total depth will permit use of
a single flat-bottom form. resulting in fast, economical construction and permitting
level ceilings. The beams will generally be wide and shallow, with heavier reinforce-
ment than otherwise, but the result will be an overall saving in construction cost. In
other cases, it may be necessary to limit the total depth of floor or roof construction
for architectural or other reasons. An advantage of reinforced concrete is its adapt-
ability to such special needs.

c. Selection of Bars and Bar Spacing

As noted in Section 2,14, common reinforcing bar sizes range from No. 3 to No. 11 (No.
10 to No. 36), the bar number corresponding closely to the number of eighth-inches
(millimeters) of bar diameter. The two larger sizes, No. 14 (No. 43) [1;—’; in. {43 mm)
diameter] and No. I8 (No. 57) E}f in. (57 mm) diameter] are used mainly in columns,
It is often desirable to mix bar sizes to meet steel area requirements more closely.
In general, mixed bars should be of comparable diameter, for practical as well as the-
oretical reasons, and generally should be arranged symmetrically about the vertical
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centerline. Many designers limit the variation in diameter of bars in a single layer to
two bar sizes, using, say, No. 10 and No. 8 (No. 32 and No. 25) bars together, but not
Nos. 11 and 6 (Nos. 36 and 19). There is some practical advantage to minimizing the
number of different bar sizes used for a given structure.

Normally, it is necessary to maintain a certain minimum distance between adja-
cent bars to ensure proper placement of concrete around them. Air pockets below the
steel are to be avoided, and full surface contact between the bars and the concrete s
desirable to optimize bond strength, ACI Code 7.6 specifies that the minimum clear
distance between adjacent bars shall not be less than the nominal diameter of the bars,
or 1 in. (For columns, these requirements are increased to l% bar diameters and 1% in.)
Where beam reinforcement is placed in two or more layers, the clear distance between
layers must not be less than 1 in., and the bars in the upper layer should be placed
directly above those in the bottom layer.

The maximum number of bars that can be placed in a beam of given width is
limited by bar diameter and spacing requirements and is also influenced by stirrup
diameter, by concrete cover requirement. and by the maximum size of concrete aggre-
gate specified. Table A.7 of Appendix A gives the maximum number of bars that can
be placed in a single layer in beams, assuming 13 in. conerete cover and the use of No.
4 {No. 13) stirrups. When using the minimum bar spacing in conjunction with a large
number of bars in a single plane of reinforcement, the designer should be aware that
problems may arise in the placement and consolidation of concrete, especially when
multiple layers of bars are used or when the bar spacing is smaller than the size of the
vibrator head.

There are also restrictions on the minimam nomber of bars that can be placed in
a single layer. based on requirements for the distribution of reinforcement to control
the width of flexural cracks (see Section 6.3}, Table A.8 gives the minimum number
of bars that will satisfy ACIl Code requirements. which will be discussed in Chapter 6.

In large girders and columns, it is sometimes advantageous to “bundle”™ tensile
or compressive reinforcement with two, three, or four bars in contact to provide for
better deposition of concrete around and between adjacent bundles. These bars may be
assumed to act as a unit, with not more than four bars in any bundle, provided that stir-
rups or ties enclose the bundle. No more than two bars should be bundled in one plane;
typical bundle shapes are triangular, square, or L-shaped patterns, Individual bars in a
bundle, cut off within the span of flexural members, should terminate at different
points. ACI Code 7.6.6 requires at least 40 bar diameters stagger between points of
cutoff. Where spacing limitations and minimum concrete cover requirements are
based on bar diameter, a unit of bundled bars is treated as a single bar with a diame-
ter that provides the same total area.

ACI Code 7.6.6 states that bars larger than No. 11 (No. 36) shall not be bundled
in beams, although the AASHTO Specifications permit bundling of Nos. 14 and 18
(Nos. 43 and 57) bars in highway bridges.

RectanGuLar BEams wiTH TENSION
AND COMPRESSION REINFORCEMENT

If a beam cross section i1s hmited because of architectural or other considerations, it
may happen that the concrete cannot develop the compression force required to resist
the given bending moment. In this case, reinforcement is added in the compression
zone, resulting in a so-called dowbly reinforced beam. ie.. one with compression as



Milson-Darwin-Dolan:

Design of Concrete
Structures, Thirteenth
Edition

3. Flexural Analysis and Text
Design of Beams

5 The Mchrave—Hilt
Campaenas, 2004

DESIGN OF CONCRETE STRUCTURES  Chapter 3

bt |

(=]
o
o
St
=]
oo
o
T

€

"
- Af ALf -
e
6’ —
d : Cl LB 1 LB
d l_ __ - la-o + b
AS——-—-—-—-—L-— -t | — —J— I —— -
A, AL, (A AL,
€.l
{a) (b) (c) {d) (e)
FIGURE 3.13

Doubly reintorced rectangular beam.

well as tension reinforcement (see Fig. 3.13). The use of compression reinforcement
has decreased markedly with the use of strength design methods, which account for
the full strength potential of the concrete on the compressive side of the neutral axis.
However, there are situations in which compressive reinforcement is used for reasons
other than strength. It has been found that the inclusion of some compression steel will
reduce the long-term deflections of members (see Section 6.5). In addition, in some
cases, bars will be placed in the compression zone for minimum-moment loading (see
Section 12.2) or as stirrup-support bars continuous throughout the beam span (see Chap-
ter 4). It may be desirable to account for the presence of such reinforcement in flex-
ural design, although in many cases they are neglected in flexural calculations.

Tension and Compression Steel Both at Yield Stress

If, in a doubly reinforced beam. the tensile reinforcement ratio - is less than or equal
to - ;. the strength of the beam may be approximated within acceptable limits by dis-
regarding the compression bars. The strength of such a beam will be controlled by ten-
sile yielding. and the lever arm of the resisting moment will ordinarily be but little
affected by the presence of the compression bars.

If the tensile reinforcement ratio is larger than - ,, a somewhat more elaborate
analysis is required. In Fig. 3.13q, a rectangular beam cross section is shown with
compression steel A] placed a distance ' from the compression face and with tensile
steel A, at effective depth o. It is assumed initially that both 4] and A, are stressed to

[, at failure. The total resisting moment can be thought of as the sum of two parts. The

first part, M. is provided by the couple consisting of the force in the compression
steel A] and the force in an equal area of tension steel

M, = Alf(d — d) (3.460)
as shown in Fig. 3.134d. The second part. M . is the contribution of the remaining ten-
sion steel A, — A] acting with the compression concrete:

M= A= Afy d =5

-

{3.460)
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as shown in Fig. 3.13¢, where the depth of the stress block is

Ag — Ak 347
T T 085fb (3:47a)
With the definitions - = A -bd and - " = A[- bd, this can be written
=
e e— 3.47h
T T ossy, (3470)

The total nominal resisting moment is then

My= My + Mo =Afyd=d-+ A= Aufy d =75 (3.48)
In accordance with the safety provisions of the ACl Code. the net tensile strain is
checked, and if - | = 0.005, this nominal capacity is reduced by the factor - = 0,90 to
obtain the design strength. For - between (LO03 and 0.004, - must be adjusted. as dis-
cussed earlier.

It is highly desirable, for reasons given earlier, that failure, should it occur, be
precipitated by tensile yielding rather than crushing of the concrete. This can be
ensured by setting an upper limit on the tensile reinforcement ratio. By setting the ten-
sile steel strain in Fig, 3,136 equal to - | to establish the location of the newtral axis for
the failure condition and then summing horizontal forces shown in Fig. 3.13¢ (still
assuming the compressive steel to be at the vield stress at failure), it is easily shown
that the balanced reinforcement ratio =, for a doubly reinforced beam is

Sm et (3.49)

where - is the balanced reinforcement ratio for the corresponding singly reinforced
beam and is calculated from Eq. (3.28). The ACI Code limits the net tensile strain, not
the reinforcement ratio. To provide the same margin against brittle failure as for singly
reinforced beams. the maximum reinforcement ratio should be limited to

T = (3.50)

MRy LT

Because - . establishes the location of the neutral axis, the limitation in Eq. (3.50)
will provide acceptable net tensile strains. A check of - is required to determine the
strength reduction factor - and verify net tensile strain requirements are satisfied.
Substituting - for -, = 0.005 for - . in Eq. (3.50) will give - = 0,90,

b. Compression Steel below Yield Stress

The preceding equations. through which the fundamental analysis of doubly rein-
forced beams is developed clearly and concisely, are valid onfy if the compression
steel has yielded when the beam reaches its nominal capacity. In many cases, such as
for wide. shallow beams, beams with more than the usual concrete cover aver the com-
pression bars, beams with high yield strength steel, or beams with relatively small
amounts of tensile reinforcement, the compression bars will be below the yield stress
at failure, It is necessary, therefore, to develop more generally applicable equations (o
account for the possibility that the compression reinforcement has not yielded when
the doubly reinforced beam fails in flexure.
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Whether or not the compression steel will have yielded at failure can be deter-
mined as follows. Referring to Fig. 3.13b. and taking as the limiting case [ = - . one
obtains, from geometry,

AN or  e=—"—4d
d- Cw T w a y
Summing forces in the horizontal direction (Fig. 3.13¢) gives the minimum wensile
reinforcement ratio — ., that will ensure yielding of the compression steel at failure:
— fod
T = 085 | ————
) _,Ir_-r (IE e - ¥

If the tensile reinforcement rotio is less than this limiting value, the neutral axis
is sufficiently high that the compression steel stress at failure is less than the vield
stress. In this case, it can easily be shown on the basis of Fig. 3.136 and ¢ that the bal-
anced reinforcement ratio is

+ - (3.51)

_ s
b= " b + - JTl (3152}
where
.
ﬂ=&¢=&wij+¢wgﬁ (3.53a)
To determine -, -, = 0.004 is substituted for - , in Eq. (3.53a), giving

fi=E; - % , T 0004 =f {3.53h)

Hence, the maximum reinforcement ratio permitted by the ACI Code is
'_rnr:.'t = T & (3.54)

fy

where f] is given in Eq. (3.53h). A simple comparison shows that Egs. (3.52) and
(3.54), with f] given by Egs. (3.53a) and (3.53h). respectively, are the generalized
forms of Egs. (3.49) and (3.50).

It should be emphasized that Eqs. (3.53a) and (3.536) for compression steel
stress apply only for beams with exact strain values in the extreme tensile steel of -
or-, = 0.004. '

If the tensile reinforcement ratio is less than . as given by Eq. (3.52), and less
than —, given by Eq. (3.51), then the tensile steel is at the yield stress at failure but the
compression steel is not, and new equations must be developed for compression steel
stress and flexural strength. The compression steel stress can be expressed in terms of
the still-unknown neutral axis depth as

{3.55)

Consideration of horizontal force equilibrium (Fig, 3.13¢ with compression steel
stress equal to f7) then gives

o —d

Aoy = 085 fobe + A K,

(3.50)
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TABLE 3.2
Minimum beam depths for compression reinforcement to yield
- = 0.004 - = 0.005
Minimum - Minirmum -
Maximum for - "= 2.5in., Maximum for- ' = 2.5in.,
-, psi SIS in. e in.
40.000 0.23 10.8 0.20 12.3
60.000 0.13 18.8 0.12 215
75,000 0.06 427 0.05 48.8

c.

This is a quadratic equation in ¢, the only unknown, and is easily solved for ¢. The
nominal flexural strength is found using the value of f; from Eq. (3.55), and a = - ¢
in the expression

M, = 085 .ab- d — g S Afod — d- (3.57)

This nominal capacity is reduced by the strength reduction factor - to obtain the
design strength.

If compression bars are used in a flexural member, precautions must be taken to
ensure that these bars will not buckle outward under load, spalling off the outer con-
crete. ACT Code 7.11.1 imposes the requirement that such bars be anchored in the
same way that compression bars in columns are anchored by lateral ties (Section 8.2).
Such ties must be used throughout the distance where the compression reinforcement
is required. _

For the compression steel o yield, the reinforcement ratio must lie below * ma
and above = . The ratio between " and the steel centroidal depth o to allow yielding
of the compression reinforcement can be found by equating —, to =, (or - for - =
0.005) and solving for ' d. Furthermore, if d' is assumed to be 2.5 in., as is often the
case, the minimum depth of beam necessary for the compression steel to vield may be
found for each grade of steel. The ratios and minimum beam depths are summarized

in Table 3.2. Values are included for -, = 0.004, the minimum tensile yield strain per-
mitted for flexural members, and -, = 0.0035, the net wensile strain needed to ensure
that - = 0.90. For beams with less than the minimum depth, the compression rein-

forcement cannot yield unless the tensile reinforcement exceeds - . The compres-
sion reinforcement may vield in beams that exceed the minimum depth in Table 3.2,
depending on the relative distribution of the tensile and compressive reinforcement.

Examples of Analysis and Design of Beams
with Tension and Compression Steel

As was the case for beams with only tension reinforcement, doubly reinforced beam
problems can be placed in one of two categories: analysis problems or design prob-
lems. For analvsis, in which the concrete dimensions, reinforcement, and marterial
strengths are given, one can find the flexural strength directly from the equations in
Section 3.7a or Section 3.7h. First, it must be confirmed that the tensile reinforcement
ratic is less than -, given by Eq. (3.52), with compression steel stress from
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Eq. (3.53a). Once it is established that the tensile steel has yielded, the tensile rein-
forcement ratio defining compression steel yielding is calculated from Eq. (3.51), and
the actual tensile reinforcement ratio is compared. If it is greater than -, then f] = f.
and M, is found from Eq. (3.48). If it is less than —, then f] < f,. In this case, ¢ is cal-
culated by solving Eq. (3.56), f’ comes from Eq. (3.55), and M, is found from
Eq. (3.57).

For the design case, in which the factored load moment M, to be resisted is
known and the section dimensions and reinforcement are to be found, a direct solution
is impossible. The steel areas to be provided depend on the steel stresses, which are
not known before the section is proportioned. It can be assumed that the compression
steel stress is equal to the vield stress, but this must be confirmed: if it is not so, the
design must be adjusted. The design procedure can be outlined as follows:

1. Calculate the maximum moment that can be resisted by the underreinforced sec-
tion with - = or. for -, = (LO0S to ensure that - = 0.90. The correspon-

Ry
ding tensile steel areais A, = -, bd. and, as usual,

Mu = A.\'f_v' d %
with
A,
0.85f.b

2, Find the excess moment, if any, that must be resisted, and set M, = M, as cal-
culated in step 1.

o

A, from step 1 is now defined as A, i.e.. that part of the tension steel area in the
doubly reinforced beam that works with the compression force in the concrete. In
Fig. 3.13e, (A, — A)) = A,

3. Tentatively assume that f] = f,. Then

N M
T fd—d

Alternatively, if from Table 3.2, the compression reinforcement is known not (o
yield. go to step 6.

4. Add an additional amount of tensile steel A, = A Thus, the total tensile steel
area A, is A, from step 2 plus A,,.

5. Analyze the doubly reinforced beam to see if f] = [: that is, check the tensile
reinforcement ratio against - .. '

6. It - -+, then the compression steel stress is less than /) and the compression
steel area must be increased to provide the needed force. This can be done as fol-
lows. The stress block depth is found from the requirement of horizontal equilib-
rium (Fig. 3.13e),

""‘1 - "'"if'l
0850
and the neutral axis depth is ¢ = a-- . From Eq. (3.553),
sl
Jr'i = u'E.t :

o
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The revised compression steel area, acting at ), must provide the same force as
the trial steel arca that was assumed to act at f,. Therefore,

. b
A.\’.rt-rj_\m' = A\c..lr.‘ﬂ.' "

fi

The tensile steel area need not be revised, because it acts at f, as assumed.

EXAMPLE 3.12 Flexural strength of a given member. A rectangular beam has a width of 12 in. and an

effective depth to the centroid of the tension reinforcement of 24 in. The tension reinforce-
ment consists of six No, 10 {No, 32} bars in two rows, Compression reinforcement consisi-
ing of two No, 8 (No. 25) bars is placed 2.5 in. from the compression face of the beam. If
Jio= 60,000 psi and f = 5000 psi, what is the design moment capacity of the beam?

SoLvrion,  The steel areas and ratios are

. 7.62
A, = T62in° = ——— = ({0265
’ . 12 % 24
3 1,58
A, = 158 in* = ————— = (L0055
TR 12 % 24
Check the beam first as a singly reinforced beam to see if the compression bars can be dis-

regarded,

e = 00243 trom Table A.4 of Appendix A
The actual - = 0.0265 is larger than - . so the beam must be analvzed as doubly rein-
torced. From Eq. (3.51),

5 2.5 0.003
o= 0B OB K W W =+ 00055 = 0.0245
' 60 24 0003 — 000207

The tensile reinforcement ratio is greater than this, so the compression bars will yield when
the beam fails, The maximum reinforcement ratio thus can be found from Fq. (3.50).
T = 00243 + 0.0055 = 0.0298

The actual tensile reinforcement ratio is below the maximum value, as required. Then, from

Eq. (3.47a),
: ST62 — 158 .60 e
T osswsxaz ™
7.1
c= m = B.§9
24 — B.8D
= 0003 ——— = 0.0051
! B.89
and
- =090
and from Eq. (3.48),
711
M,= 158 x6024 - 25 + 604 <60 24 ~ T = G450 in-kips

The design strength is
M, = 0.90 x 9450 = 8500 in-kips
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EXAMPLE 3.13

Design of a doubly reinforced beam. A rectangular beam that must carry a service live
load of 2.47 kips/ft and a calculated dead load of 1.05 kips/ft on an 18 ft simple span 1s lim-
ited in cross section for architectural reasons 1o 10 in. width and 20 in. total depth.
If f, = 60,000 psi and f; = 4000 psi, what steel area(s) must be provided?

Sorvrion,  The service loads are first increased by load factors 1o obtain the factored load
of 1.2 % LOS + 1.6 »x 247 = 5.21 kips/ft. Then M, = 5.21 = 1858 = 211 fi-kips =
2530 in-kips. To satisfy spacing and cover requirements (see Section 3.6), assume that the
tension steel centroid will be 4 in. above the bottom face of the beam and that compression
steel, if required, will be placed 2.5 in. below the beam’s top surface. Then ¢ = 16 in. and
d' =25

First, check the capacity of the section if singly reinforced. Table A 4 shows the maxi-
mum - for -, = 0.005, the strain associated with - = 0,90, to be 0.0181. While the maxi-
mum reinforcement ratio is slightly hizher, Example 3.8 demonsirated there was no eco-
nomic efficiency of using -, = 0,003, S0, A, = 10 > 16 % 0.0181 = 2,90 in®, Then, with

2,50 X 6l

= ——————— = 512 in,
(L85 X 4 X 10

i

¢ = g (L85 = 6,02 in. and the maximum nominal moment that can be developed is
M, =290 x 60-16 - 5.12-2- = 2340 in-kips

Alternatively, R = 913 from Table A.5b, the nominal moment is M, = 913 x 10 > 16 1000
= 2340 in-kips. Because the corresponding design moment, - M, = 2100 in-kips, is less
than the required capacity, 2530 in-kips, compression steel 15 needed as well as additional
tension steel.

The remaining moment to be carried by the compression steel couple is

2530
M, = 090 2340 = 470 in-kips
Az ¢ is less than the value required to develop the compression reinforcement yield siress
(Table 3.2), a reduced stress in the compression reinforcement will be used,

002 — 25

o= 0003
' 6.02

= 000175 and £, = 0.00175 > 29,000 = 50.9 ksi

Try f7 = 50 ksi for the compression reinforcement to obtain the area of steel.

470

= —ﬁﬂ-lﬂ s = 0,70 in"

The total area of tensile reinforcement at 60 ks 1s
S0
=290 + 070 — =348 ksi
: o0 si
Two No, 6 (No. 19) bars will be used for the compression reinforcement and four No, 9
(Mo, 29} bars will provide the tensile steel area as shown in Fig. 3.14. To place the tension
bars in a 10 in. beam width, two rows of two bars each are used.

A final check 1s made to ensure that the selection of reinforcement does not create a
lower compressive stress than the assumed 50 ksi.

50
A, =40 - 088 — =327
60 mn



Milson-Darwin-Dolan: 3. Flexural Analysis and Text 5 Tha Mchraw—Hilt
Design of Concrete Design of Beams Campisnas, 2004
Structures, Thirteenth

Edition

FLEXURAL ANALYSIS AND DESIGN OF BEAMS 103

FIGURE 3.14

Doubly reinforced beam of 10"
Example 3,13,

2 No. 6 (No. 9) -, |

4 No. 9 (No. 29) = |

3
[
ENTH]

which is greater than 2.90 in® for -, = 0.005. so - <2 0,90,

3.27 % 60 ,
¢ 08s X ax 10 i
597 .
o= m = 6.?9 1.
679 — 2.5
= 00032222 L 0019
s 679

= 20000 = 0.0019 = 55,0 ksi

which is greater than assumed. Cheek - using o, = 17.25 from Fig. 3.13 and compute the
revised M,. For simplicity, the area of tensile reinforcement is not modified.
17.25 - 6.79
co= 0003 ———— = 0.0046
' 0.79
for which - = 0.87. Then

577
M, =087 327 xX 60 160 - 5

+ 088 > 55.0-16 — 2.5- - = 2810 in-kips

This is greater than M, so no further refinement is necessary,

d. Tensile Steel below the Yield Stress

All doubly reinforced beams designed according to the ACI Code must be underrein-
forced. in the sense that the tensile reinforcement ratio is limited to ensure yielding at
beam failure. Two cases were considered in Sections 3.7a and 3.7b, respectively: (a)
both tension steel and compression steel yield, and (b) tension steel yields but com-
pression steel does not. Two other combinations may be encountered in analvzing the
capacity of existing beams: {c) tension steel does not yield, but compression steel
does, and {d) neither tension steel nor compression steel yvields. The last two cases are
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unusual. and in fact, it would be difficult to place sufficient tension reinforcement to
create such conditions, but it is possible. The solution in such cases is obtained as a
simple extension of the treatment of Section 3.7b. An equation for horizontal equilib-
rium is writtent. in which both tension and compression steel stress are expressed in
terms of the unknown neutral axis depth c. The resulting quadratic equation is solved
for ¢, after which steel stresses can be calculated and the nominal flexural strength
determined.

T Beams

With the exception of precast systems, reinforced concrete floors, roofs, decks, ete.,
are almost always monolithic. Forms are built for beam soffits and sides and for the
underside of slabs, and the entire construction 1s cast at once, from the bottom of the
deepest beam to the top of the slab. Beam stirrups and bent bars extend up into the
slab. It is evident, therefore, that a part of the slab will act with the upper part of the
beam to resist longitudinal compression. The resulting beam cross section is T-shaped
rather than rectangular. The slab forms the beam flange. while the part of the beam
projecting below the slab forms what is called the web or stem. The upper part of such
a'T beam is stressed laterally due to slab action in that direction. Although transverse
compression at the level of the bottom of the slab may increase the longitudinal com-
pressive strength by as much as 25 percent, transverse tension at the top surface
reduces the longitudinal compressive strength (see Section 2,10}, Neither effect is usu-
ally taken into account in design.

a. Effective Flange Width

The next question to be resolved is that of the effective width of flange. In Fig. 3.15a,
it is evident that if the flange is but little wider than the stem width, the entire flange
can be considered effective in resisting compression. For the floor system shown in
Fig. 3.15h, however, it may be equally obvious that elements of the flange midway
between the beam stems are less highly stressed in longitudinal compression than
those elements directly over the stem. This is so because of shearing deformation of
the flange. which relieves the more remote elements of some compressive stress.

Although the actual longitudinal compression varies because of this effect, it is
convenient in design to make use of an effective flange width, which may be smaller
than the actual flange width but is considered to be uniformly stressed at the maximum
value. This effective width has been found to depend primarily on the beam span and
on the relative thickness of the slab.

FIGURE 3.15 p— b — |
E %,

Effective flange width of |
I E—

b, e b,
ia) (b}

b _ %
_4\',._
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The criteria for effective width given in ACI Code 8.10 are as follows:

1. For symmetrical T beams, the effective width b shall not exceed one-fourth the
span length of the beam. The overhanging slab width on either side of the beam
web shall not exceed 8 times the thickness of the slab nor go beyond one-half the
clear distance to the next beam.

2. For beams having a slab on one side only, the effective overhanging slab width
shall not exceed one-twelfth the span length of the beam, 6 times the slab thick-
ness, or one-half the clear distance to the next beam.

3. For isolated beams in which the flange is used only for the purpose of providing
additional compressive area, the flange thickness shall not be less than one-half
the width of the web, and the total flange width shall not be more than 4 times the
web width,

b. Strength Analysis

The neutral axis of a T beam may be either in the flange or in the web, depending upon
the proportions of the cross section, the amount of tensile steel, and the strengths of
the materials. If the calculated depth to the neutral axis is less than or equal to the slab
thickness /. the beam can be analyzed as if it were a rectangular beam of width equal
to b, the effective flange width, The reason for this is illustrated in Fig. 3.16a. which
shows a T beam with the neutral axis in the flange. The compressive area is indicated
by the shaded portion of the figure. If the additional concrete indicated by areas | and
2 had been added when the beam was cast, the physical cross section would have been
rectangular with a width 5. No bending strength would have been added because areas
| and 2 are entirely in the tension zone. and tension concrete is disregarded in flexural
calculations. The original T beam and the rectangular beam are equal in flexural
strength, and rectangular beam analysis for flexure applies.

When the neutral axis is in the web, as in Fig. 3.16b, the preceding argument is
no longer valid. In this case, methods must be developed to account for the actual T-
shaped compressive zone.

In treating T beams, it is convenient to adopt the same equivalent stress distribu-
tion that is used for beams of rectangular cross section. The rectangular stress block,
having a uniform compressive-stress intensity .85 £, was devised originally on the
basis of tests of rectangular beams (see Section 3.4a), and its suitability for T beams
may be guestioned. However, extensive calculations based on actual stress-strain curves
(reported in Ref. 3.12) indicate that its use for T beams, as well as for beams of circu-
lar or triangular cross section, introduces only minor error and is fully justified.

FIGURE 3.16 hy he
Effective cross scctions of L F b ﬁ L F b ﬁ
1 beame F/ ”'j. Neutral V A
d T_I I axs d T_I - - I MNeutral
| (N 2 | (M (2) | axis
-'l—ll ——a— Jl -'l—ll - Jl

b b, by
(a) (b)
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FIGURE 3.17. by €4 0.85 f;
Slt:ai‘n :J.m! eruivalent stress b -I l —-1 l-— —-1 l-—
distributions for T beams, 3 —
F/ A c a= Bgﬂ
: I B _ _ ]
d -
oo} — g ——
sy
o el
(a) (b) {c)

Accordingly, a T beam may be treated as a rectangular beam if the depth of the
equivalent stress block is less than or equal to the flange thickness. Figure 3.17 shows
a tensile-reinforced T beam with effective flange width b, web width b, effective
depth to the steel centroid d, and flange thickness fr,. If for trial purposes the stress
block is assumed to be completely within the flange,

Af, fd
C085b 085

i (3.58)
where - = A_-hd. If u is less than or equal to the flange thickness /i, the member may
be treated as a rectangular beam of width & and depth d. If « is greater than i, a T
beam analysis is required as follows,

It will be assumed that the strength of the T beam is controlled by vielding of the
tensile steel. This will nearly always be the case because of the large compressive con-
crefe area provided by the flange. In addition, an upper limit can be established for the
reinforcement ratio to ensure that this is so, as will be shown,

As a computational device, it is convenient to divide the total tensile steel inio
two parts, The first part, A,;, represents the steel area which, when stressed o f. is
required o balance the longitudinal compressive force in the overhanging portions of
the flange that are stressed uniformly at 0.85f]. Thus,

0.85f, b — b,-hy
Ay = I

The force A f, and the equal and opposite force 0.85 f(h — by M act with a lever arm
d—h-2w provide the nominal resisting moment:

(3.59)

f
My = Ayl d = 5 (3.60)
The remaining steel area, A, — A, ata stress f,, is balanced by the compression
in the rectangular portion of the beam. The depth of the equivalent rectangular stress
block in this zone is found from horizontal equilibrivm:
A, Ay
0=——— 36l
" T08S b, (3.61)
An additional moment M, is thus provided by the forces (A, — A)f, and 0.85f ab,
acting at the lever arm d — a- 2:

My = A — Agf, d - % (3.62)
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C.

and the total nominal resisting moment is the sum of the parts:
hy a
M, =M, + M, =Agf d— 7 + A A fd- 3 (3.63}

This moment is reduced by the strength reduction factor - in accordance with the
safety provisions of the ACI Code to obtain the design strength,

As for rectangular beams, the ensile steel should yield prior to sudden crushing
of the compression concrete, as assumed in the preceding development. Yielding of
the tensile reinforcement and Code compliance are ensured if the net tensile strain is
greater than 0.004, From the geometry of the section,

C i

— = 364

d.l T + - ] ': }
Serting -, = (0L003 and - | = 0,004 provides a maximum o d, ratio of 0.429, as seen in
Fig. 3.10. Thus, as long as the depth to the neutral axis is less than 0,429, the net ten-
sife strain requirements are satisfied, as they are for rectangular beam sections, This
will oecur 1f -, = A - b is less than

=. + -

WREL L ra

(3.65)

where -, = A b dand -, is as previously defined for a rectangular cross section
[Eq. (3.308)]. For ¢ d, ratios between (0.429 and 0.375, equivalent to - . between the
Cwmae from Eq. (3.65)and - calculated by substituting - from Eq. (3.30a) with
- = (.005 in place of - the strength reduction factor - must be adjusted for -, as
shown in Fig. 3.9.

The practical result of applying Eq. (3.65) is that the stress block of T beams
will almost always be within the flange. except for unusual geometry or combinations
of material strength. Consequently, rectangular beam equations may be applied in
most cases.

The ACIE Code restriction that the tensile reinforcement ratio for beams must not
be less than -, = 3+ f.f, and = 200 f, (see Section 3.4d) applies to T beams as well
as rectangular beams. For T beams, the ratio - should be computed for this purpose
based on the web width &,

eyt

Proportions of Cross Section

When designing T beams, in contrast to analyzing the capacity of a given section. nor-
mally the slab dimensions and beam spacing will have been established by transverse
flexural requirements. Consequently. the only additional section dimensions that must
be determined from flexural considerations are the width and depth of the web and the
area of the tensile steel.

If the stem dimensions were selected on the basis of concrete stress capacity in
compression, they would be very small because of the large compression flange width
turnished by the presence of the slab, Such a design would not represent the optimum
solution because of the large tensile steel requirement resulting from the small effec-
tive depth. because of the excessive web reinforcement that would be required for
shear, and because of large deflections associated with such a shallow member. It is
better practice to select the proportions of the web (1) so as to keep an arbitrarily low
web-reinforcement ratio -, or (2} so as to keep web-shear stress at desirably low lim-
its or (3) for continuous T beams, on the basis of the flexural requirements at the sup-
ports, where the effective cross section is rectangular and of width b,
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In addition to the main reinforcement caleulated according to the preceding
requirements, it is necessary to ensure the integrity of the compressive flange of T
beams by providing steel in the flange in the direction transverse to the main span. In
typical construction, the slab steel serves this purpose. In other cases. separate bars
must be added to permit the overhanging flanges to carry, as cantilever beams. the
loads directly applied. According to ACI Code 8.10.5, the spacing of such bars must
not exceed 5 times the thickness of the flange nor in any case exceed 18 in.

Examples of Analysis and Design of T Beams

EXAMPLE 3.14

For analvzing the capacity of a T beam with known concrete dimensions and tensile
steel area, it is reasonable to start with the assumption that the stress block depth a does
not exceed the flange thickness &, In that case, all ordinary rectangular beam equations
(see Section 3.4) apply. with beam width taken equal to the effective width of the
flange. If. upon checking that assumption. a proves to exceed /i, then T beam analysis
must be applied. Equations (3.59) through (3.63) can be used. in sequence, to obtain the
nominal flexural strength, atter which the design strength is easily calculated.
For design. the following sequence of calculations may be followed:

1. Establish flange thickness /i, based on flexural requirements of the slab, which

normally spans transversely between parallel T beams,

Determine the effective flange width # according to ACI limits,

Choose web dimensions b, and J based on either of the following:

(a) negative bending requirements at the supports. if a continuous T heam

(b) shear requirements. setting a reasonable upper-limit on the nominal unit shear

stress v, in the beam web (see Chapter 4)

4. With all concrete dimensions thus established, calculate a trial value of A,. assum-
ing that a does not exceed /i, with beam width equal to flange width b. Use ordi-
nary rectangular beam design methods.

5. For the trial A, check the depth of stress block a to confirm that it does not exceed
h. It it should exceed that value, revise A, using the T beam equations.

6. Check to ensure that -, = 0.004 or ¢-d = 0,429, (This will almost invariably be
the case.)

7. Check to ensure that - || =

b b

Wi

Moment capacity of a given section. An isolated T beam is composed of a flange 28 in.
wide and 6 in. deep cast monolithically with a web of 10 in, width that extends 24 in. below
the bottom surface of the flange to produce a beam of 30 in, total depth. Tensile reinforce-
mient consists of six No. 10 (No. 32) bars placed in two horizontal rows, The centroid of the
bar group is 26 in. from the top of the beam. It has been determined that the concrete has a
strength of 3000 psi and that the yield stress of the steel s 60,000 psi. What is the design
moment capacity of the beam?

Sovvrion, It is easily confirmed that the flange dimensions are satisfactory according to
the ACT Code for an isolated beam. The entire flange can be considered effective. For six
No. 10 (No. 32) bars. A, = 7.62 in®. First check the location of the neutral axis, on the
assumption that rectangular beam equations may be applied,

162

- = = 0.0105
28 % 26



Milson-Darwin-Dolan: 3. Flexural Analysis and Text 5 Tha Mchraw—Hilt
Design of Concrete Design of Beams Campisnas, 2004
Structures, Thirteenth
Edition
FLEXURAL ANALYSIS AND DESIGN OF BEAMS 109
and from Eq. (3.32)
762 = 60 .
a = 085 <3 <28 6.40 in.
This exceeds the flange thickness, and so a T beam analysis is required. From Eq. {3.59),
3 .
Ay =085 xﬁx 28 =10 x 6 = 4.5%in"
Hence
A, = Ay =762~ 459 = 3.03 in?
Then, from Eq. (3,60},
M, = 4.59 X 60026 — 3) = 6330 in-kips
while from Egs. (3.58) and (3.59)
303 % 60 ,
R AVET 713 in.
M, = 303 = 60-26 — 3.56- = 4080 in-kips
The depth to the neutral axis is ¢ = @ ;= 7.13.-0.85 = 8.39 and d, = 27.5 in. 10 the lowest
bar, The o d, ratio is 8.39-27.5 = 0.305 - 0325, so the -, 0,005 requirement is met and
- = (.90, When the ACT strength reduction factor is incorporated. the design strength is
- M, = 0906330 + 40800 = 9370 in-kips
EXAMPLE 3.15 Determination of steel area for a given moment. A floor system consists of a 3 in. con-

crete slab supported by continuous T beams with a 24 ft span, 47 in, on centers. Web dimen-
sions, as determined by negative-moment requirements at the supports, are b, = 11 in. and
d = 20 in. What tensile steel area is required at midspan to resist a factored moment of
6400 in-kips if £, = 60,000 psi and £ = 3000 psi?
Sorvrion,  First determining the effective flange width,

loh + b, = 16 X3 + 11 =5%in

Span

12
=24 ®— = T2lin,
4

Centerline beam spacing = 47 in.

The centerline T beam spacing controls in this case, and b = 47 in. The concrete dimensions
b, and o are known (o be adequate in this case, since they have been selected for the larger
negative support moment applied to the effective rectangular section b d. The tensile steel
at midspan is most conveniently found by trial. Assuming the stress-block depth equal 1o the
flange thickness of 3 in., one gets

d - %= 20 — 1.50 = 18.50 in.
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Trial:
M 6400 )
A, = - = =641 in’
T i d-a2 0o0x60x1ss0 o
A, 6.41
bd a7 x 20 D068
d 000682 % 60 % 20 .
i = = = 3.21in.
0.85f; 0.85 % 3

Since a is greater than fi, a T beam design is required and - = 0.90 is assumed.

4 085 b= b-hy 085 3 x36x3
o £ 60

= 459 in’

h
My = Agfed - 5( = 0,90 % 4.59 % 60 % 18.50 = 4590 in-kips

My =M, -~ M, = 6400 - 4590 = 1810 in-kips

Assume g = 400 in.:

- M 1810
.'". _ A = " ey = Igﬁ 2
i it fvf"_ a2 090 = 60 = 1800 .
Check:
A= Agl 1.86 % 60
0= E = 398 in.

0.85f.h, 085 <3 x 11

This is satisfactorily close to the assumed value of 4 in. Then
A=A+ (A — A =459+ 186 = 645 in?

Checking 1o ensure that the net tensile strain of 0.005 is met o allow - = 0,90,
a 398
= —=——=448
08
c 468
—=—=1{23 . (325
d, 20

indicating that the design is satisfactory.

The close agreement should be noted between the approximate tensile steel area of
6,41 in? found by assuming the stress-block depth equal w the flange thickness and the more
exact value of 6.45 in® found by T beam analysis. The approximate solution would be satis-
factory in most cases.
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PROBLEMS

3.1,

3.2,

3.3

34,

A rectangular beam made using concrete with f) = 4000 psi and steel with f,

= 60,000 psi has width b = 24 in., total depth h = 18 in., and effective depth

o = 13.5 in. Concrete modulus of rupture f, = 475 psi. The elastic modulus of

the steel and concrete are, respectively, 29,000,000 psi and 3,600,000 psi. The

tensile steel area is A, = five No. 11 (No. 36) bars,

{a) Find the maximum service load moment that can be resisted without
stressing the concrete higher than 0.45 f) or the steel above 0.40f,.

(h) Determine the nominal flexural strength of the beam section, and calcu-
late the ratio of nominal flexural strength to service load moment.

(¢) Determine whether this beam will show flexural cracking before reaching
the service load calculated in part (a).

A rectangular, tension-reinforced beam is to be designed for dead load of
500 b/t plus self weight and service live load of 1200 Ib/ft, with a 22 ft sim-
ple span. Material strengths will be f, = 60 ksi and £ = 3 ksi for steel and con-
crete, respectively. The total beam depth must not exceed 16 in. Calculate the
required beam width and tensile steel requirement, using a reinforcement ratio
of 0.60- ... Use ACI load Tactors and strength reduction factors. The effective
depth may be assumed to be 2.5 in. less than the total depih.

A beam with a 20 i simple span has cross-section dimensions b = [2in., d =

23 in., and & = 25 in. (see Fig. 3.2b for notation). It carries a uniform service

load of 2450 Ib/ft in addition to its own weight. Material strengths are f/ =

4000 psi and f, = 60,000 psi. Assume a weight of 150 pef for reinforced con-

crete.

{a) Check whether this beam, if reinforced with three No. 9 (No. 29) bars, is
adequate to carry this load with a minimum factor of safety against {lex-
ural failure of 1.85. If this requirement is not met, select a three-bar rein-
forcement of diameter or diameters adequate to provide this safety.

(h) Determine the maximum stress in the steel and in the concrete under ser-
vice load, i.e., when the beam carries its own weight and the specified uni-
form load.

() 'Will the beam show hairline eracks on the tension side under service load?

A rectangular reinforced concrete beam has dimensions b = 12in.. ¢ = 21 in.,

and i = 24 in., and is reinforced with three No. 10 (No. 32) bars. Material

strengths are f, = 60,000 psi and f = 4000 psi.

{a) Find the moment that will produce the first cracking at the bottom surface
of the beam, basing your caleulation on 7, the moment of inertia of the
2ross concrele section,
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3.5,

3.6

3.7.

3.8,

3.9,

3.0

(h) Repeat the caleulation using [, the moment of inertia of the uncracked
transformed section,

(e} Determine the maximum moment that can be carried without stressing the
concrete beyond 0.45 f7 or the steel beyond 0.40f,.

(d) Find the nominal flexural strength and design strength of this beam.

{e) Compute the ratio of design strength () to service capacity (c).

A tensile-reinforced beam has b = 12 in. and ¢ = 20 in. o the center of the

bars, which are placed all in one row. If f, = 60,000 psi and £ = 5000 psi. find

the nominal flexural strength M, for (@) A, = two No. 8 (No. 25) bars, (b) A,

= two No. 10 (No. 32) bars, (¢} A, = three No. 10 (No. 32} bars.

A singly reinforced rectangular beam is o be designed, with effective depth

approximately 1.5 times the width, to carry a service live load of 1300 Ih/ft in

addition to its own weight, on a 24 ft simple span. The ACI Code load factors

are 1o be applied as usual. With f, = 60,000 psi and f/ = 4000 psi, determine

the required concrete dimensions b, d, and h, and steel reinforcing bars (a) for

- =050 and by for - = Include a sketch of each eross section drawn

o scale. Allow for No. 3 {(No. 10} stirrups. Comment on your results.

A four-span continuous beam of constant rectangular section is supported at A,

B, C, D, and E. Factored moments resulting from analysis are

At supports, ft-kips At midspan, fi-kips

M, = 92 M, = 105

M, = 147 M, = 92

M_= 134 M, = 92

M, = 147 M, = 105

M, = 91
Determine the required concrete dimensions for this beam. using o = 1,755,
and find the required reinforcement for all critical moment sections, Use a
maximum reinforcement ratio of - = 0.60- . f, = 60,000 psi, and f =
5000 psi. '

A two-span continuous concrete beam is to be supported by three masonry
walls spaced 25 fton centers, A service live load of 1.5 kips/ft is to be carried,
in addition to the self-weight of the beam. A constant rectangular cross section
is o be used. with h = 26, but reinforcement is o be varied according o
requirements, Find the required concrete dimensions and reinforcement at all
critical sections. Allow for No. 3 (No. [0) stitrups. Include sketches, drawn o
scale, of critical cross sections. Use f) = 4000 psi and f, = 60,000 psi.

A rectangular concrete beam measures 12 in. wide and has an effective depth
of 18 in. Compression steel consisting of two No. 8 (No. 25) bars is located
2.5 in. from the compression face of the beam. If f7 = 4000 psi and f, =
60,000 psi. what is the design moment capacity of the beam, according to the
ACI Code. for the following alternative tensile steel areas: (a) A, = three No. 10
(No. 32) bars in one layer. (h) A, = four No. 10 (No. 32} bars in two layers, (¢)
A, = six No. Y {No. 29} bars in two layers? {Note: Check for yielding of com-
pression steel in each case.) Plot M, versus - and comment on your findings.

A rectangular concrete beam of width b = 24 in. is limited by architectural
considerations to a maximum total depth & = 16 in. It must carry a total fac-
tored load moment M, = 400 fi-kips. Design the flexural reinforcement for
this member, using compression steel if necessary. Allow 3 in. to the center of
the bars from the compression or tension face of the beam. Material strengths
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312,

3.13.

3.14,

3.15,

are f, = 60,000 psi and f = 4000 psi. Select reinforcement to provide the
needed areas, and show a sketch of your final design, including provision for
No. 4 (No, [3) stirrups.

A rectangular beam with width b = 24 in., total depth & = 14 in., and effec-
tive depth to the tensile steel d = 11.5 in. is constructed using materials with
strengths f; = 4000 psi and f, = 60,000 psi. Tensile reinforcement consists of
two No. 11 (No. 36) bars plus three No. 10 {(No. 32) bars in one row,
Compression reinforcement consisting of two No. 10 {No. 32) bars is placed
at distance " = 2.5 in. from the compression face. Calculate the nominal and
design strengths of the beam (@) neglecting the compression reinforcement. (b}
accounting for the compression reinforcement and assuming that it acts at f,,
and (¢) accounting for the compression reinforcement working at its actual
stress [, established by analysis,

A tensile-reinforced T beam is to be designed to carry a uniformly distributed
load on a 20 ft simple span. The total moment to be carried is M, = 5780 in-
kips. Concrete dimensions, governed by web shear and clearance require-
ments, are b = 20 in., b, = 10 in., .‘rj-= Sin., and o = 20in. If £, = 60 ksi and

£ = 4 ksi, what tensile reinforcement is required at midspan? Select appro-

priate reinforcement to provide this area and check concrete cover limitations,
assuming No. 3 (No. 10) stirrups. What total depth /i is required? Sketch your
design.

A concrete floor system consists of parallel T beams spaced 10 ft on centers
and spanning 32 11 between supports. The 6 in. thick slab is cast monolithically
with T beam webs having width b, = 14 in. and total depth, measured from
the top of the slab, of i = 28 in. The elfective depth will be taken 3 in. less
than the total depth. In addition (o its own weight, each T beam must carry a
superimposed dead load of 30 psf and service live load of 225 psf. Material
strengths are f, = 60,000 psi and f7 = 4000 psi. Determine the required ten-
sile steel area and select the reinforcement needed for a typical member.

A precast T beam is to be wsed as a bridge over a small roadway. Concreie
dimensions are b = 48 in., b, = 16in,, hy = 5in., and & = 25 in. The effec-
tive depth o = 20 in. Concrete and steel strengths are 6000 psi and 60,000 psi,
respectively, Using approximately one-half the maximum tensile reinforce-
ment permitted by the ACT Code (select the actual size of bar and number @
be used), determine the design moment capacity of the girder. If the beam is
used on a 30 fi simple span, and if in addition 1o its own weight it must sup-
port railings, curbs, and suspended loads totaling 0.475 kips/ft, what uniform
service live load limit should be posted?

Compute the maximum and minimum reinforcement ratios tor reinforcement
with an 80 ksi yield point and 7 = 4000 to 8000 psi in 1000 psi increments,
similar to those shown in Tahle A4 of Appendix A. Using the maximum and
minimum reinforcement ratios, develop resistance factors and design graphs
similar to Table A.5b and Graph A.la.



