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SERVICEABILITY

INTRODUCTION

Chapters 3, 4, and 5 have dealt mainly with the strength design of reinforced concrete
beams. Methods have been developed to ensure that beams will have a proper safety
margin against failure in flexure or shear. or due to inadequate bond and anchorage of
the reinforcement. The member has been assumed to be at a hypothetical overload
state for this purpose.

It is also important that member performance in normal service be satisfactory,
when loads are those actually expected to act, i.e., when load factors are 1.0, This is
not guaranteed simply by providing adequate strength. Service load deflections under
full load may be excessively large, or long-term deflections due to sustained loads may
cause damage. Tension eracks in beams may be wide enough to be visually disturb-
ing, and in some cases may reduce the durability of the structure. These and other
questions, such as vibration or fatigue, require consideration,

Serviceability studies are carried out based on elastic theory, with stresses in
both concrete and steel assumed to be proportional to strain. The concrete on the ten-
sion side of the neutral axis may be assumed uncracked, partially cracked, or fully
cracked, depending on the loads and material strengths (see Section 3.3),

In early reinforced concrete designs, questions of serviceability were dealt with
indirectly, by limiting the stresses in concrete and steel at service loads to the rather
conservative values that had resulted in satisfactory performance. In contrast. with cur-
rent design methods that permit more slender members through more accurate assess-
ment of capacity, and with higher-strength materials further contributing to the trend
toward smaller member sizes, such indirect methods no longer work. The current
approach is to investigate service load cracking and deflections specifically, after pro-
portioning members based on strength requirements.

In this chapter, methods will be developed to ensure that the cracks associated
with flexure of reinforced concrete beams are narrow and well distributed. and that
short and long-term deflections at loads up to the full service load are not objection-
ably large.

CraACKING IN FLExuraL MEMBERS

All reinforced concrete beams crack, generally starting at loads well below service
level, and possibly even prior to loading due to restrained shrinkage. Flexural crack-
ing due to loads is not only inevitable, but actually necessary for the reinforcement to
be used effectively. Prior to the formation of flexural cracks, the steel stress is no more
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than n times the stress in the adjacent concrete, where i 1s the modular ratio, E- .
For materials common in current practice.  is approximately 8. Thus, when the con-
crete is close to its modulus of rupture of about 500 psi, the steel stress will be only
8 ¥ 500 = 4000 psi, far too low to be very effective as reinforcement. At normal ser-
vice loads, steel stresses 8 or 9 times that value can be expected.

In a well-designed beam, flexural cracks are fine, so-called hairline cracks,
almost invisible to the casual observer, and they permit little if any corrosion of the
reinforcement. As loads are gradually increased above the cracking load, both the
number and width of cracks increase, and at service load level a maximum width of
crack of about 0.016 in. is typical. If loads are further increased, crack widths increase
further, although the number of cracks is more or less stable.

Cracking of concrete 15 a random process, highly variable and influenced by
many factors. Because of the complexity of the problem, present methods for predict-
ing crack widths are based primarily on test observations. Most equations that have
been developed predict the probable maximen crack width, which vsually means that
about 90 percent of the crack widths in the member are below the caleulated value.
However, isolated cracks exceeding twice the computed width can sometimes occur
(Ref. 6.1).

Variables Affecting Width of Cracks

In the discussion of the importance of a good bond between steel and concrete in Section
5.1, it was pointed out that if proper end anchorage is provided. a beam will not fail
prematurely, even though the bond is destroved along the entire span. However, crack
widths will be greater than for an otherwise identical beam in which good resistance
to slip is provided along the length of the span. In general, beams with smooth round
bars will display a relatively small number of rather wide cracks in service, while
beams with good slip resistance ensured by proper surface deformations on the bars
will show a larger number of very fine, almost invisible cracks, Because of this
improvement, reinforcing bars in current practice are always provided with surface
deformations, the maximum spacing and minimum height of which are established by
ASTM Specifications A 615, A 706, and A 996,

A second variable of importance is the stress in the reinforcement. Studies by
Gergely and Lutz and others (Refs. 6.2 to 6.4) have confirmed that crack width is pro-
portional to 7, where [ is the steel stress and n is an exponent that varies in the range
from about 1.0 to 1.4, For steel stresses in the range of practical interest, say from 20
to 36 ksi, n may be taken equal to 1.0, The steel stress is easily computed based on
clastic cracked-section analysis (Section 3.3b). Alternatively, f; may be taken egual o
0.60f, according to ACI Code 10.6.4.

‘Experiments by Broms (Ref. 6.5) and others have shown that both crack spacing
and crack width are related to the conerete cover distance . measured from the cen-
ter of the bar to the face of the conerete. In general, increasing the cover inereases the
spacing of cracks and also increases crack width. Furthermore, the distribution of the
reinforcement in the tension zone of the beam is important. Generally, to control
cracking, it is better to use a larger number of smaller-diameter bars to provide the
required A, than to use the minimum number of larger bars, and the bars should be
well distributed over the tensile zone of the concrete. For deep flexural members, this
includes additional reinforcement on the sides of the web to prevent excessive surface
crack widths above the level of the main flexural reinforcement.
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Equations for Crack Width

A number of expressions for maximum crack width have been developed based on the
statistical analysis of experimental data. Two expressions that have figured promi-
nently in the development of the crack control provisions in the ACI Code are those
developed by Gergely and Lutz (Ref. 6.2) and Frosch (Ref. 6.4) for the maximum
crack width at the tension face of a beam. They are, respectively,

wo= 0076 f-" dA (6.1)
and
f;- . ¥ 2
r = 2 — = + - .
w=20002 5 (6.2)

N

where w = maximum width of crack. thousandth inches

[, = steel stress at load for which crack width is to be determined. ksi.
E, = modulus of elasticity of steel. ksi
The geometric parameters are shown in Fig. 6.1 and are as follows:

d. = thickness of concrete cover measured from tension face to center of bar

closest to that face, in,
= ratio of distances from tension face and from steel centroid to neutral

axis, equal to fi,-h,

A = concrete area surrounding one bar, equal to total effective tension area of

concrete surrounding reinforcement and having same centroid, divided
by number of bars, in”
& = maximum bar spacing, in.

Equations (6.1) and (6.2}, which apply only to beams in which deformed bars are used.
include all of the factors just named as having an important influence on the width of
cracks: steel stress, concrete cover, and the distribution of the reinforcement in the
concrele tensile zone, In additon, the factor - is added (o account for the increase in
crack width with distance from the neutral axis {see Fig. 6.1h).

Cyclic and Sustained Load Effects

Both eyelic and sustained loading account for increasing crack width. While there is a
large amount of scatter in test data, results of fatigue tests and sustained loading tests
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indicate that a doubling of crack width can be expected with time (Ref. 6.1). Under
most conditions, the spacing of cracks does not change with time at constant levels of
sustained stress or cyclic stress range.

AC| Cope Provisions FOR CRACK CONTROL

In view of the random nature of cracking and the wide scatter of crack width meas-
urements, even under laboratory conditions, crack width is controtled in the ACI Code
by establishing a maximum center-to-center spacing 5 for the reinforcement closest to
the surface of a tension member as a function of the bar stress under service condi-
tions f, (in ksi) and the clear cover from the nearest surface in tension to the surface
of the flexural tension reinforcement ¢ .

540 36
§ = - 250, =12 = (6.3)
j 2 [

The choice of clear cover ¢, rather than the cover to the center of the bar 4., was made
to simplify design. since this allows 5 to be independent of bar size. As a consequence,
maximum crack widths will be somewhat greater for larger bars than for smaller bars.

As shown in Eq. (6.3). the ACI Code sets an upper limit on 5 of 12(36 f). The
stress f, is caleulated by dividing the service load moment by the product of the area
of reinforcement and the internal moment arm, as shown in Eq. (3.8). Alternatively,
the ACI Code permits £, to be taken as 60 percent of the specified vield strength f,. For
members with only a single bar, s is taken as the width of the extreme tension face.

Figure 6.2a compares the values of spacing 5 obtained using Eqs. (6.1) and (6.2)
for a beam containing No. 8 (No. 25) reinforcing bars, for f, = 36 ksi.- = 1.2, anda
maximum crack width w = (.016 in., to the values calculated using Eg. (6.3).
Equations (6.1} and (6.2) give identical spacings for two values of clear cover, but sig-
nificantly ditferent spacings for other values of ¢.. Equation (6.3) provides a practical
compromise between the values of s that are calculated using the two experimentally
based expressions. The equation is plotted in Fig. 6.26 for f, = 24, 36, and 45 ksi. cor-
responding to (L60 f, for Grade 40, 60, and 75 bars. respectively.

ACI Code 10.6.5 points out that the limitation on s in Eq. (6.3) is not sufficient
for structures subject to very aggressive exposure or designed to be watertight. In such
cases “special investigations or precautions” are required. These include the use of
expressions such as Eqgs. (6.1) and (6.2) to determine the probable maximum crack
width. Further guidance is given in Ref. 6.1,

When concrete T beam flanges are in tension, as in the negative-moment region
of continuous T beams, concentration of the reinforcement over the web may result in
excessive crack width in the overhanging slab, even though cracks directly over the
web are fine and well distributed. To prevent this, the tensile reinforcement should be
distributed over the width of the flange. rather than concentrated. However, because of
shear lag. the outer bars in such a distribution would be considerably less highly
stressed than those directly over the web, producing an uneconomical design. As a rea-
sonable compromise. ACI Code 10.6.6 requires that the tension reinforcement in such
cases be distributed over the effective flange width or a width equal to one-tenth the
span, whichever is smaller. If the effective flange width exceeds one-tenth the span,
some longitudinal reinforcement must be provided in the outer portions of the flange.
The amount of such additional reinforcement is left to the discretion of the designer; it
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Maximum bar spacing vs.
clear cover: (a) Comparison
of Eqs. 46,10 (6.2), and (6.3)
for w. = 0.016 in., §, =
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Girade 40, 60, and 75
reinforcement, respectively,

( Part (a} after Ref. 6.6.)
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should at least be the equivalent of temperature reinforcement for the slab (see Section
13.3), and is often taken as twice that amount,

For beams with relatively deep webs, some reinforcement should be placed near
the vertical faces of the web to control the width of cracks in the concrete tension zone
above the level of the main reinforcement. Without such steel, crack widths in the web
wider than those at the level of the main bars have been observed. According to ACI
Code 10.6.7, if the depth of the web exceeds 36 in., longitudinal “skin” reinforcement
must be uniformly distributed along both side taces of the member for a distance 2
nearest the flexural tension steel. The spacing 5, between longitudinal bars or wires,
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EXAMPLE 6.1

FIGURE 6.3

T beam for crack width
determination in
Example 6.1,

cach with area A,,. used as skin reinforcement must not exceed the least of ¢ 2, 12 1n.,
and 1000 A, {d — 30). The total area of longitudinal skin reinforcement in both faces
need not exceed one-half the area of the required flexural tensile reinforcement. The
contribution of the skin steel to flexural strength is wsually disregarded. although it
may be included in the strength calculations if a strain compatibility analysis is used
1o establish the stress in the skin steel at the flexural failure load.

Figure 6.2B provides a convenient design aid for determining the maximum
center-to-center bar spacing as a function of clear cover for the usual case used in
design, f, = 0.6f. From a practical point of view, it is even more helpful to know the
minimum number of bars across the width of a beam stem that is needed to satisfy the
ACI Code requirements for crack control. That number depends on side cover, as well
as clear cover to the tension face, and is dependent on bar size. Table A8 in Appendix
A gives the minimum number of bars across a beam stem for two common cases, 2 in.
clear cover on the sides and bottom, which corresponds to using No. 3 or No. 4 (No.
10 or No. 13) stirrups, and 17 in. clear cover on the sides and bottom, representing
beams in which no stirrups are used.

Check crack control criteria.  Figure 6.3 shows the main flexural reinforcement at mid-
span for a T girder in a high-rise building that carries a service load moment of 7760 in-kips.
The clear cover on the side and bottom of the beam stem is 25 in. Determine if the beam
meets the crack control criteria in the ACI Code.

Sorvrion,  Since the depth of the web is less than 36 in., skin reinforcement is not needed.
To check the bar spacing criteria, the steel stress can be estimated closely by taking the inter-
nal lever arm equal to the distance o — k- 2:

M, 7760

= = = 336 ksi
Avd—h 2 79X 2925 !

1

(Alternately, the ACH Code permits using f, = 0.607., giving 36.0 ksi.)
Using f, in Eq. (6.3) gives

540 540
= T = 25c, =~ 25 x 225 = 104 in.

336
By inspection, it is clear that this requirement is satisfied for the beam. If the results had
been unfavorable, a redesign using a larger number of smaller-diameter bars would have
been indicated.
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CONTROL OF DEFLECTIONS

In addition to limitations on cracking, described in the preceding sections, it is usually
necessary to impose certain controls on deflections of beams to ensure serviceability,
Excessive deflections can lead to cracking of supported walls and partitions, ill-fitting
doors and windows, poor roof drainage, misalignment of sensitive machinery and
equipment, or visually offensive sag. It is important, therefore, to maintain contral of
deflections, in one way or another, so that members designed mainly for strength at
prescribed overloads will also perform well in normal service,

There are presently two approaches to deflection control, The first is indirect and
consists in seiting suitable upper limits on the span-depth ratio. This is simple, and it
is satisfactory in many cases where spans, loads and load distributions, and member
sizes and proportions fall in the usual ranges, Otherwise, it is essential to calculate
deflections and to compare those predicted values with specific limitations that may
be imposed by codes or by special requirements.

It will become clear, in the sections that follow, that calculations can, at best,
provide a guide to probable actual deflections, This is so because of uncertainties
regarding material properties, effects of cracking, and load history for the member
under consideration. Extreme precision in the calculations, therefore, is never justi-
fied, because highly accurate results arc unlikely, However, it is generally sufficient to
know, for example, that the deflection under load will be ah{:ut% in. rather than 2 in.,
while it is relatively unimportant to know whether it will actually be 3 in. rather than
Lin.

The deflections of concern are generally those that occur during the normal ser-
vice life of the member, In service, a member sustains the full dead load, plus some
fraction or all of the specified service live load. Safety provisions of the ACI Code and
similar design specifications ensure that, under loads up to the full service load,
stresses in both steel and concrete remain within the elastic ranges, Consequently,
deflections that occur at once upon application of load, the so-called immediare deflec-
tions, can be calculated based on the properties either of the uncracked elastic mem-
ber, the cracked elastic member, or some combination of these (see Section 3.3).

It was pointed out in Sections 2.8 and 2.1 1, however, that in addition to concrete
deformations that occur immediately when load is applied. there are other deforma-
tions that take place gradually over an extended period of time. These time-dependent
deformations are chiefly due to concrete creep and shrinkage. As a result of these
influences, reinforced conerete members continue to deflect with the passage of time,
Long-term deflections continue over a period of several years, and may cventually be
two or more times the initial elastic deflections, Clearly, methods for predicting both
instantancous and time-dependent deflections are essential.

IMMEDIATE DEFLECTIONS

Elastic deflections can be expressed in the general form

_ [-loads, spans, supports-
B Ei

where L is the flexural rigidity and f{loads, spans, supports) is a function of the par-
ticular load, span, and support arrangement. For instance, the deflection of a uniformly
loaded simple beam is Swi* 384E], so that £ = wi* 384, Similar deflection equations
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have been tabulated or can easily be computed for many other loadings and span
arrangements. simple, fixed, or continuous, and the corresponding f functions can be
determined. The particular problem in reinforced concrete structures is therefore the
determination of the appropriate flexural rigidity Ef for a member consisting of two
materials with properties and behavior as widely different as steel and concrete.

If the maximum moment in a flexural member is so small that the tensile stress
in the concrete does not exceed the modulus of rupture £, no flexural tension cracks
will oeeur. The full, uneracked section is then available for resisting stress and pro-
viding rigidity. This stage of loading has been analyzed in Section 3.3a. In agreement
with this analysis, the effective moment of inertia for this low range of loads is that of
the uncracked transformed section [, and £ is the modulus of concrete E, as given by
Eq. (2.3} Correspondingly. for this load range,

LB fl
" EI" !IIN'

(e}

At higher loads, flexural tension cracks are formed. In addition, if shear stresses
exceed v, [see Eg. (4.3)] and web reinforcement is employed to resist them, diagonal
cracks can exist at service loads. In the region of flexural cracks, the position of the
neutral axis varies: directly at each crack it is located at the level caleulated for the
cracked transformed section (see Section 3.3b); midway between cracks it dips to a
location closer to that caleulated for the uncracked transformed section. Correspond-
ingly, flexural-tension cracking causes the effective moment of inertia to be that of the
cracked transformed section in the immediate neighborhood of flexural-tension
cracks, and closer to that of the uncracked transformed section midway between
cracks, with a gradual rransition between these extremes.

It is seen that the value of the local moment of inertia varies in those portions of
the beam in which the bending moment exceeds the cracking moment of the section

Jelu

Me'r = }_\]

6.4}

where v, is the distance from the neutral axis to the tension face and f, is the modulus
of rupture. The exact variation of [ depends on the shape of the moment diagram and
on the crack pattern, and is difficult to determine. This makes an exact deflection cal-
culation impossible.

However, extensively documented studies (Ref. 6.7) have shown that deflec-
tions A, occurring in a beam after the maximum moment M, has reached and
exceeded the cracking moment M, can be calculated by using an effective moment
of inertia /,: that is,

= (b)

where

M. 3 M. k]
f:'= == Ifr.n'+ I_J

0, =1, 6.5
M{l’ Mﬂ ‘ : ( }

and /,, is the moment of inertia of the cracked transformed section.

In Fig. 6.4, the effective moment of inertia. given by Eq. (6.5), is plotted as a
function of the ratio M, M, (the reciprocal of the moment ratio used in the equation).
It is seen that, for values of maximum moment M less than the cracking moment M.,
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that is, M- M, less than 1.0, {, = I . With increasing values of M, I, approaches I,
and for values of M- M of 3 or more, I, is almost the same as [,.. Typical values of
M- M, at full service load range from about 1.5 1o 3,

Figure 6.5 shows the growth of deflections with increasing moment for a simple-
span beam, and illustrates the use of Eq. (6.5). For moments no larger than M, deflec-
tions are practically proportional o moments and the deflection at which cracking
begins is obtained from Eq. (@) with M = M_,. Atlarger moments, the effective moment
of inertia J, becomes progressively smaller, according to Eq. (6.5), and deflections are
found by Eq. (b} for the load level of interest. The moment M, might correspond to the
full service load, for example, while the moment M, would represent the dead load
moment for a typical case. A moment-deflection curve corresponding to the line £.J,,
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represents an upper bound for deflections. consistent with Fig. 6.4, except that at loads
somewhat beyond the service load, the nonlinear response of steel or concrete or both
causes 4 further nonlinear increase in deflections.

Note that to caleulate the increment of deflection due to live load, causing a
moment increase M, — M|, a two-step computation is required: the first for deflection
A, due to live and dead load, and the second for deflection 4, due to dead load alone,
each with the appropriate value of /,. Then the deflection increment due to live load is
found, equal to &, — A,

Muost reinforced concrete spans are continuous, not simply supported. The con-
cepts just introduced for simple spans can be applied, but the moment diagram for a
given span will include both negative and positive regions, reflecting the rotational
restraint provided at the ends of the spans by continuous frame action. The effective
moment of inertia for a continuous span can be found by a simple averaging proce-
dure, according to the ACI Code, that will be described in Section 6.7c.

A fundamental problem for continuous spans is that, although the deflections are
based on the moment diagram, that moment diagram depends, in turn, on the flexural
rigidity £/ for each member of the frame. The flexural rigidity depends on the extent
of cracking, as has been demonstrated. Cracking. in turn, depends on the moments,
which are to be found. The circular nature of the problem is evident.

One could use an iterative procedure, initially basing the frame analysis on
uncracked concrete members, determining the moments, calculating effective EY terms
for all members, then recalculating moments, adjusting the Ef values. etc. The process
could be continued for as many iterations as needed. until changes are not significant,
However, such an approach would be expensive and time-consuming, even with com-
puter use.

Usually, a very approximate approach is adopted. Member flexural stiffnesses
for the frame analysis are based simply on properties of uncracked rectangular con-
crete cross sections. This can be defended noting that the moments in a continuous
frame depend only on the refative values of £ in its members, not the absolure val-
ves, Hence, if a consistent assumption, i.e., uncracked section, is used for all members,
the results should be valid. Although cracking is certainly more prevalent in beams
than in columns, thus reducing the relative Ef for the beams, this is compensated to a
large extent, in typical cases, by the stiffening effect of the flanges in the positive
bending regions of continuous T beam construction. This subject is discussed at
greater length in Section 12,5,

DerLecTioNs Due 10 LonGg-TERM LoADS

Initial deflections are increased significantly if loads are sustained over a long period
of time, due to the effects of shrinkage and creep. These two effects are usually com-
bined in deflection calculations. Creep generally dominates, but for some types of
members, shrinkage deflections are large and should be considered separately (see
Section 6.8).

It was pointed out in Section 2.8 that creep deformations of concrete are directly
proportional to the compressive stress up to and beyond the usual service load range.
They increase asymptotically with time and. for the same stress, are larger for low-
strength than for high-strength concretes. The ratio of additional time-dependent strain
to initial elastic strain is given by the creep coefficient C,, (see Table 2.1},

For a reinforced concrete beam, the long-term deformation is much more com-
plicated than for an axially loaded cylinder, because while the concrete creeps under
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sustained load, the steel does not. The situation in a reinforced concrete beam is illus-
trated by Fig, 6.6, Under sustained load, the initial strain - ; at the top face of the beam
increases, due to creep, by the amount -, while the strain - in the steel is essentially
unchanged. Because the rotation of the strain distribution diagram is therefore about a
point at the level of the steel, rather than about the cracked elastic neutral axis, the neu-
tral axis moves down as a result of creep, and

- - (@

demonstrating that the usual creep coefficients could not be applied to initial curva-
tures o obtain creep corvatures (hence deflections).

The sitpation is further complicated. Due to the lowering of the newtral axis asso-
ciated with creep (see Fig. 6.6F) and the resulting increase in compression area, the
compressive stress reguired to produce a given resultant C to equilibrate T = A_f| is
less than before, in contrast to the situation in a creep test of a compressed cylinder,
because the beam creep occurs at a gradually diminishing stress. On the other hand,
with the new Tower neutral axis, the internal lever arm between compressive and ten-
sile resultant forces is less, calling for an increase in both resultants for a constant
moment. This, in twrn, will require a small increase in stress, and hence strain, in the
steel: thus, -, is not constant as assumed originally.

Because of such complexities, it is necessary in practice to caleulate additional,
time-dependent deflections of beams due o creep (and shrinkage) using a simplified,
empirical approach by which the initial elastic deflections are multiplied by a factor -
to obtain the additional long-time deflections. Values of - for use in design are based
on long-term deflection data for reinforced concrete beams (Refs, 6.8 to 6.11). Thus

Ca= Eﬁﬁ,}

where A, is the additional long-term deflection due to the combined effect of creep and
shrinkage. and A, is the initial elastic deflection calculated by the methods described
in Section 6.5.

The coefficient - depends on the duration of the sustained load. It also depends
on whether the beam has only reinforcement A, on the tension side. or whether addi-
tional longitudinal reinforcement A, is provided on the compression side. In the latter
case, the long-term deflections are much reduced. This is so because when no com-
pression reinforcement is provided. the compression concrete is subject to unre-
strained creep and shrinkage. On the other hand, since steel is not subject 1o creep, if
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additional bars are located close to the compression face. they will resist and thereby
reduce the amount of creep and shrinkage and the corresponding deflection (Ref,
6.11). Compression steel may be included for this reason alone. Specific values of -,
used to account for the influence of creep and compression reinforcement, will be
given in Section 6.7.

If a beam carries a certain sustained load W{e.g., the dead load plus the average
traffic load on a bridge) and is subject to a short-term heavy live load P (e.g.. the
weight of an unusually heavy vehicle). the maximum total deflection under this com-
bined loading is obtained as follows:

1. Calculate the instantaneous deflection A, caused by the sustained load W by
methods given in Section 6.5,
2, Calculate the additional long-term deflection caused by Wi i.e.,

3. Then the toral deflection caused by the sustained part of the load is

Tow Tow Toiw

4. In calculating the additional instantaneous deflection caused by the short-term
load P, account must be taken of the fact that the load-deflection relation after
cracking is nonlinear, as illustrated by Fig. 6.5. Hence

T iwp T w

where 4, , ,,1$ the total instantaneous deflection that would be obtained if Wand
P were applied simultaneously, caleulated by using f, determined for the moment
caused by W + P,

5. Then the total deflection under the sustained load plus heavy short-term load is
=. +

W in

In caleulations of deflections, careful attention must be paid to the load history,
i.e.. the time sequence in which loads are applied. as well as to the magnitude of the
loads. The short-term peak load on the bridge girder just described might be applied
early in the life of the member, before time-dependent deflections had taken place.
Similarly, for buildings. heavy loads such as stacked material are often placed during
construction. These temporary loads may be equal to, or even greater than, the design
live load. The state of cracking will correspond to the maximum logd that was carried,
and the sustained load deflection, on which the long-term effects are based, would cor-
respond to that cracked condition. {, for the maximum load reached should be used to
recalculate the sustained load deflection before calculating long-term effects.

This will be illustrated referring to Fig. 6.7, showing the load-deflection plot for
a building girder that is designed to carry a specified dead and live load. Assume first
that the dead and live loads increase monotonically. As the full dead load W, is
applied. the load deflection curve follows the path (-1, and the dead load deflection,
A, is found using 1,; calculated from Eq. (6.5). with M, = M. The time-dependent
effect of the dead load would be - A, As live load is then applied, path 1-2 would be
followed. Live load deflection. A, would be found in two steps, as described in
Section 6.5, first finding A, based on [,. with M, in Eq. (6.5) equal to M, .. and then
subtracting dead load deflection &

If, on the other hand, short-term construction loads were applied. then removed,
the deflection path 1-2-3 would be followed. Then, under dead load only, the resulting
deflection would be - . Note that this deflection can be found in one step using W,
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but with ., corresponding to the maximum load reached. The long-term deflection now
would be - - 4 significantly farger than before. Should the full design {ive load then be
applied, the deflection would follow path 3-4, and the live load deflection would be less
than for the first case. It. too, can be calculated by a simple one-step calculation using
W, alone, in this case, and with moment of inertia equal to [,

Clearly, in calculating deflections, the engineer must anticipate, as nearly as pos-
sible, both the magnitude and time-sequence of the loadings. Although long-term
deflections are often calculated assuming monotonic loading, with both immediate
and long-term effects of dead load occurring before application of live load. in many
cases this is not realistic,

ACI| Cope Provisions FOR CONTROL OF DEFLECTIONS

a. Minimum Depth-Span Ratios

As pointed out in Section 6.4, two approaches to deflection control are in current use,
both acceptable under the provisions of the ACI Code, within prescribed limits. The
simpler of these is to impose restrictions on the minimum member depth A, relative to
the span /, to ensure that the beam will be sufficiently stff that deflections are unlikely
to cause problems in service. Deflections are greatly influenced by support conditions
(e.g.. a simply supported uniformly loaded beam will deflect 5 times as much as an
otherwise identical beam with fixed supports), so minimum depths must vary depend-
ing on conditions of restraint at the ends of the spans.

According to ACI Code 9.5.2, the minimum depths of Table 6.1 apply to one-
wiy construction not supporting or attached to partitions or other construction likely
to be damaged by large deflections, unless computation of deflections indicates a
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TABLE 6.1

Minimum thickness of nonprestressed beams or one-way slabs unless deflections are
computed

Minimum Thickness, -

Member Simply One End Both Ends
Supported Continuous Continuous Cantilever

Members not supporting or attached to partitions or other
construction likely to be damaged by large deflections

Solid one-way slabs 120 24 [28 10
Beams or ribbed one-way slabs I 16 I 18.5 121 I-B

lesser depth can be used without adverse effects. Values given in Table 6.1 are to be
used directly for normal-weight concrete with w, = 145 pef and reinforcement with
. = 60,000 psi. For members using lightweight concrete with density in the range
from 90 to 120 pef, the values of Table 6.1 should be multiplied by (1.65 — 0.005w,}
= 1.09. For yield strengths other than 60,000 psi. the values should be multiplied by
(0.4 -+ £ 100,000).

b. Calculation of Immediate Deflections

When there is need to use member depths shallower than are permitted by Table 6.1,
or when members support construction that is likely to be damaged by large deflec-
tions, or for prestressed members, deflections must be caleulated and compared with
limiting values (see Section 6.7e). The calculation of deflections, when required, pro-
ceeds along the lines described in Sections 6.5 and 6.6, For design purposes, the
moment of the uncracked transformed section [, can be replaced by that of the gross
concrete section /. neglecting reinforcement, without serious error. With this simpli-

fication, Eqgs. (6.4} and (6.5) are replaced by the following:

(6.7}

and

M., M,
'fr:' o, j'g+.]—.—'—".

q, =1

v , (6.8)

The modulus of rupture for normal-weight concrete is to be taken equal to

=175 f (6.9a)

For lightweight concrete, the modulus of rupture may not be known, but the split-
cylinder strength £, 1s often specified and determined by tests. For normal-weight con-
cretes, the split-cylinder strength is generally assumed to be f, = 6.7 f.. Accord-
ingly, in Eq. (6.9a), f,-6.7 can be substituted for - f for the purpose of calculating
the modulus of rupture. Then for lightweight conerete, if ), is known,
: Ju
f,=75 6.7 127, (6.90)
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where f,-6.7 is not to exceed - [ according to ACI Code 9.5.2. In licu of test infor-
mation on tensile strength, f. can be calculated by Eq. (6.9«) muliiplied by (L.75 for
“all-lightweight™ concrete and (L85 for “sand-lightweight™ concrete.

Continuous Spans

For continuous spans, ACI Code 9.5.2 calls for a simple average of values obtained
from Eq. (6.8} for the critical positive- and negative-moment sections, i.e.,

{, = 0501, + 0251, + 1, (6.10a)

where [, is the effective moment of inertia for the midspan section and [, and /,;
those for the negative-moment sections at the respective beam ends, each calculated
from Eg. (6.8} using the applicable value of M. It is shown in Ref. 6,12 that a some-
what improved result can be had for continuous prismatic members using a weighted

average for beams with both ends continuous of

I, =0704, + 0151, + [, {6.1058)
and for beams with one end continuous and the other simply supported of
-’,, = ﬂ.gsfﬂu + '[},l:l_fr. (fl]g(}

where [, is the effective moment of inertia at the continuous end. The ACI Code, as
an option. also permits use of {, for continuous prismatic beams to be taken equal to
the value obtained from Eq. (6.8} at midspan: for cantilevers, [, calculated at the sup-
port section may be used.

After {, is found, deflections may be computed using the moment-area method
(Ref. 6.13), with due regard for rotations of the tangent to the elastic curve at the sup-
ports. In general. in computing the maximum deflection, the loading producing the
maximum positive moment may be used, and the midspan deflection may normally be
used as an acceptable approximation of the maximum deflection. Coefficients for
deflection calculation such as derived by Branson in Ref. 6.7 are helpful. For mem-
bers where supports may be considered fully fixed or hinged. handbook equations for
detlections may be used.

Long-Term Deflection Multipliers

On the basis of empirical studies (Refs. 6.7, 6.9, and 6.11), ACI Code 9.5.2 specifies
that additional long-term deflections A, due to the combined effects of creep and
shrinkage shall be calculated by multiplying the immediate deflection A; by the factor

1+ 50 .11y
where - " = A[-bd and - is a time-dependent coefficient that varies as shown in Fig. 6.8.
In Eq. (6.11), the quantity 1-{I + 50+ ' is a reduction factor that is essentially a scc-
tion property, reflecting the beneficial effect of compression reinforcement A] in reduc-
ing long-term deflections, whereas - is a material property depending on creep and
shrinkage characteristics. For simple and continuous spans, the value of - * used in Eq.
(6.11) should be that at the midspan section, according to the ACI Code, or that at the
support for cantilevers. Equation (6.11) and the values of - given by Fig. 6.8 apply to
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FIGURE 6.8

Time variation of - for long-

term deflections.

0 L1 | ] | 1 | 1 | 1
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both normal-weight and lightweight concrete beams. The additional. time-dependent
deflections are thus found using values of - from Eq. (6.11) in Eq. (6.6).

Values of - given in the ACI Code and Commentary are satisfactory for ordinary
beams and one-way slabs, but may result in underestimation of time-dependent deflec-
tions of two-way slabs, for which Branson has suggested a five-year value of - = 3.0
(Ref. 6.7).

Research by Paulson, Nilson, and Hover indicates that Eq. (6.11) does not prop-
erly reflect the reduced creep that is characteristic of higher-strength concreres (Ref.
6.14). As indicated in Table 2.1, the creep coefficient for high-strength concrete may
be as low as one-half the value for normal concrete, Clearly, the long-term deflection
of high-strength concrete beams under sustained load, expressed as a ratio of imme-
diate ¢lastic deflection, correspondingly will be less, This suggests a lower value of
the material modifier - in Eq. (6.11) and Fig. 6.8, On the other hand, in high-strength
concrete beams, the influence of compression steel in reducing creep deflections is
less pronounced, requiring an adjustment in the section modifier 1- {1 + 50- ") in that
cguation,

Based on long-term tests involving six experimental programs, the following
madified form of Eq. (6.11) is recommended (Ref, 6.14):

- W (6.12)
in which

= 14 — £ 10,000

04=- =10 (6.13)

The proposed equation gives results identical to Eg. (6.11) Tor concrete strengths of
4000 psi and below, and much improved predictions for concrete strengths between
4000 and 12,000 psi.

Permissible Deflections

To ensure satsfactory performance in service, ACI Code 9.3.2 imposes certain limits
on deflections caleulated according to the procedures just described. These limits are
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TABLE 6.2
Maximum allowable computed deflections
Type of Member Deflection to Be Considered Deflection
Limitation
Flat roofs not supporting or attached Immediate deflection due to the i
to nonstructural elements likely fo live load L. T80
be damaged by large deflections
Floors not supporting or attached to Immediate deflection due to the live ;
nonstructural elements likely o be load L —
damaged by large deflections 360
Roeof or floor construction supporting That part of the wial deflection
or attached to nonstructural elements oecurring after attachment of the !
likely to be damaged by large nonstructural elements (sum of 480
deflections the long-time deflection due to all
- : sustained loads and the immediate

Roof or floor construction supporting deflection due 1o any additional live /
or atached 1o nonstructural elements load) 0
not likely 1o be damaged by large
deflections

given in Table 6.2, Limits depend on whether or not the member supports or is
attached to other nonstructural elements, and whether or not those nonstructural ele-
ments are likely to be damaged by large deflections. When long-term deflections are
computed, that part of the deflection that occurs before attachment of the nonstructural
elements may be deducted; information from Fig. 6.8 is useful for this purpose. The
last two limits of Table 6.2 may be exceeded under certain conditions, according to the

ACT Code.

EXAMPLE 6.2

Deflection caleulation.  The beam shown in Fig. 6.9 is a part of the floor system of an
apartment house and is designed to carry calculated dead load w, of 165 Kips/fit and a ser-
vice live load w, of 3.3 kips/ft. Of the total live load, 20 percent is sustained in nature, while
80 percent will be applied only intermittently over the life of the struciure. Under full dead
and live load, the moment diagram is as shown in Fig. 6.9, The beam will support non-
structural partitions that would be damaged if large deflections were to occur, They will be
installed shortly after construction shoring is removed and dead loads take effect, but before
significant creep occurs. Calculate that part of the total deflection that would adversely
affect the partitions, i.e., the sum of long-time deflection due to dead and partial live Toad
plus the immediate deflection due to the nonsustained part of the live load. Material
strengths are £ = 4000 psi and f, = 60 ksi,

SoLumioN,  For the specified materials, E. = 57,000 - 4000 = 3.60 > 10° psi, and with
E. = 29 x 10° psi, the modular ratio n = 8 The modulus of rupture f = 7.5 - 4000 =
474 psi. The effective moment of inertia will be caleulated for the moment diagram shown
in Fig. 6.9¢ corresponding to the full service load, on the basis that the exient of cracking
will be governed by the full service load, even though that load is intermittent. In the positive-
moment region, the centroidal axis of the uncracked T section of Fig. 6.9 is found by tak-
ing moments about the top surface, to be at 7.66 in. depth, and [, = 33,160 in®, By similar
means, the centroidal axis of the cracked transformed T section shown in Fig. 6.9 is located
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373 in. below the top of the slab and [
by means of Eq. (6.7):

10,860 in*. The cracking moment is then found

33,160 ]
16.84 12.000

M., = 474 X = 78 fi-kips

With M. M, = T8 162 = 0481, the effective moment of inertia in the positive bending
region is found from Eq. (6.8) (o be

[o= 0480 % 31,160 + -1 — 04801 = 10860 = 13.120in°

In the negative bending region, the gross moment of inertia will be based on the rectangu-
lar section shown in Fig. 6.9, For this area. the centroid 1s 12.25 in. from the top surface
and [, = 17,200 in', For the cracked transformed section shown in Fig. 6.9¢, the centroidal

axis is found, taking moments about the bottom surface, to be 8.65 in. from that level, and
[, = 11366 in". Then

17,200 I

M., =474 X
v 12.25 12,000

= 53,5 fi-kips
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giving M- M, = 55,5225 = 0.247. Thus, for the negative-moment regions,
1= 02477 517200 + -1 — 0.247% % 11,366 = 11.450 in*

The average value of /, to be used in calculation of deflection is
1
I = 5-13.!20 + 11,450 = 12,285 in’

It is next necessary 1o find the sustained-load deflection multiplier given by Eq. (6.11) and
Fig. 6.8, For the positive bending zone. with no compression reinforcement, -, = 2.00.

For convenient reference, the deflection of the member under full dead plus live load of
4.95 kips/ft, corresponding to the moment diagram of Fig. 6.9¢, will be found. Making use
of the moment-area principles,

e k125X 2 x 125 - 225 X 125 % 625 . =020
UEr 30 =R - - T Ef
7620 ¥ 1728
= = (298 in.
3600 X 12.285 ’"

Using this figure as a basis, the time-dependent portion of dead load deflection (the only part
of the total that would affect the partitions) is
1.65

g = Wo—— X 200 =0, in.
g = 0298 495 200 = 0.199 in

while the sum of the immediate and time-dependent deflection due to the sustained portion
of the live load is

4.95

oo = 0,298 X % 0,20 % 300 = 0.119 in,

and the instantaneous deflection due to application of the short-term portion of the live load is

A3 .
sy = 0298 195 # .80 = 0,159 in.

Thus the total deflection that would adversely affect the partitions, from the time they are
installed until all long-time and subsequent instantaneous deflections have occurred, is

= 0199 + 0.119 + 0,159 = 0477 in.

For comparison, the limitation imposed by the ACI Code in such circumstances 1s [ 480 =
26 x 12-480 = 0.650 in., indicating that the stiftness of the proposed member is sufficient,

It may be noted that relatively little error would have been introduced in the above solu-
tion if the cracked-section moment of inertia had been used for both positive and necative
sections rather than [,. Significant savings in computational effort would have resulted, If
M_,- M is less than 4. use of /, would almost always be acceptable. It should be noted fur-
ther that computation of the moment of nertia for both uncracked and cracked sections is
ereatly facilitated by design aids like those included in Ref. 6.15.

DerLecTIONS DUE TO SHRINKAGE AND TEMPERATURE CHANGES

Conerete shrinkage will produce compressive stress in the longitudinal reinforcement
in beams and slabs and equilibrating tensile stress in the concrete. If, as usual, the rein-
forcement is not symmetrically placed with respect to the concrete centroid, then
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FIGURE 6.10

Shrinkage curvature of a
reinforced concrete beam
or slab: (a) cross section:
(5} free shrinkage straing
(¢} shrinkage curvature,

shrinkage will produce curvature and corresponding deflection. The deflections will
be in the same direction as those produced by the loads, if the reinforcement is mainly
on the side of the member subject to flexural tension.

Shrinkage deflection is not usually calculated separately, but is combined with
creep deflection, according to ACI Code procedures (see Section 6.7d). However,
there are circumstances where a separate and more accurate estimation of shrinkage
deflection may be necessary, particularly for thin, lightly loaded slabs. Compression
steel, while it has only a small effect in reducing immediate elastic deflections, con-
tributes significantly in reducing deflections due to shrinkage (as well as creep), and
is sometimes added for this reason.

Curvatures due to shrinkage of concrete in an unsymmetrically reinforced con-
crete member can be found by the fictitious tensile force method (Ref. 6.7). Figure
6.10a shows the member cross section., with compression steel area A, and tensile steel
area A,, at depths o' and d, respectively, from the top surface. In Fig. 6,105, the con-
crete and steel are imagined to be temporarily separated, so that the conerete can
assume its free shrinkage strain - ;. Then a fictitious compressive force T, =
A, + Ay gE| s applied to the steel, at the centroid of all the bars, a distance e below
the concrete centroid, such that the steel shortening will exactly equal the free shrink-
age strain of the concrete. The equilibrating tension force T, is then applied to the
recombined section, as in Fig. 6.10¢. This produces a moment e, and the corre-
sponding shrinkage curvature is

) "r;ﬂe
"Rl

The effects of concrete cracking and creep complicate the analysis, but wmpﬂ.ri‘;unf.
with experimental data (Ref. 6.7) indicate that good results can be obtained using ¢,

and /, f{)r the uncracked gross concrete section and by using a reduced modulus E

equal to 5 £, to account for creep. Thus

2T
- T (6.14)

T oah -Er Ig

where E, is the usual value of concrete modulus given by Eq. (2.3).

Empirical methods are also used, in place of the fictitious tensile force method,
to calculate shrinkage curvatures. These methods are based on the simple but reason-
able proposition that the shrinkage curvature is a direct function of the free shrinkage
and steel percentage, and an inverse function of the section depth (Ref. 6.7). Branson

Unit length
: % Gancrete
. e — | | — "—Efsh centroid |"_
1~ |
fa S T | Y L______
Al 1! shlem ==y
—to—e—o L g i S e L

Steel centroid

(b)
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suggests that for steel percentage {p — p") = 3 percent (where p= 1004, - bd and p’ =
1004 - bd},
1-2
s a3 PP
C =072 —p TR .
I i p—p »

{6.15a)

and for (p — p") = 3 percent,

L
= {6.15b)

ol h
With shrinkage curvature calculated by either method, the corresponding mem-
ber deflection can be determined by any convenient means such as the moment-arca
or conjugate-heam method. It steel percentages and eccentricities are constant along
the span, the deflection -, resulting from the shrinkage curvature can be determined

from

ca = Kl (6.16)

where K, is a coefficient equal to (.500 for cantilevers., (1,125 for simple spans, 0.065

for interior spans of continuous beams, and (.090 for end spans of continuous beams

(Ref. 6.7).

Shrinkage deflection, Calculate the midspan detlection of a simply supported beam of
20 ft span due to shrinkage of the concrete for which -, = T80 ¢ 10~ % With reference o
Fig. 6,100, b = 10in,,d = 17.5in., h = 20in., A, = 3.00in", and A, = 0, The elastic mod-
uli are £, = 3.6 % 10° psi and £, = 29 X 10 psi.
Sorvrion, By the ficttious tensile force method,
1, = 300 % 780 % 10°% % 29 % 10° = 67,900 1b

and from Eq. (6.14) with I, = 6670,
_ 2 X 67900 % 75

36 % 100 % 6670
while from Eq. (6.106) with K, = 0.125 for the simple span,

Ca = D125 50 424 ¢ 10T % 240° = 0305 in.

=424 = 10"

Y]

Alternatively. by Branson's approximate Eq. (6.15q) with p = 100 > 3 175 = 1.7 per-
cent and p' = 1),

0.7 X T80 ¢ 10°°

. = . BT fi
" 0 17 325 =10

compared with 42.4 > 10 * obtained by the equivalent tensile force method. Considering
the uncertainties such as the effects of cracking and creep. the approximate approach can
usually be considered satisfactory.

Deflections will be produced as a result of differential temperatures varying
from top to borom of a member also. Such variation will result in a strain variation
with member depth that may usually be assumed o be linear. For such cases, the
deflection due to differential temperature can be calculated using Eg. (6.16) in which
- 18 replaced by - AT- A, where the thermal coefficient - for concrete may be taken
as 5.5 = 10 ® per °F and AT is the temperature differential in degrees Fahrenheit from
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1
Unit length /L\

FIGURE 6.11
Unit curvature resulting from
bending of beam section,

one side to the other. The presence of the reinforcement has little influence on curva-
tures and deflections resulting from differential temperatures, because the thermal
coefficient for the steel (6.5 x 10 ®) is very close to that for concrete.

MomMENT vs. CURVATURE FOR REINFORCED CONCRETE SECTIONS

Although it is not needed explicitly in ordinary design and is not a part of ACI Code
procedures, the relation between moment applied to a given beam section and the
resulting curvature, through the full range of loading to failure, is important in several
contexts, It is basic to the study of member ductility, understanding the development
of plastic hinges, and accounting for the redistribution of elastic moments that occurs
in most reinforced concrete structures before collapse (see Section 12.9),

It will be recalled, with reference to Fig. 6.11. that curvature is defined as the
angle change per unit length at any given location along the axis of a member sub-
jected to bending loads:

= — (6.17)

where - = unit curvature and » = radius of curvature. With the stress-strain relation-
ships for steel and concrete, represented in idealized form in Fig. 6.12qa and b, respec-
tively, and the usuval assumptions regarding perfect bond and plane sections, it is pos-
sible to calculate the relation between moment and curvature for a typical
underreinforced concrete beam section, subject to flexural cracking, as follows.
Figure 6.13¢ shows the transformed cross section of a rectangular, tensile-
reinforced beam in the uncracked clastic stage of loading, with steel represented by
the equivalent conerete arca nA . L.e., with area (n — 1)A, added outside of the rectan-
gular concrete section.? The neotral axis, a distance ¢ below the top surface of the
beam, 1s easily found (sce Section 3.3a). In the limiting case, the concrete stress at the
tension face is just equal to the modulus of rupture /. and the strain is -, = f-E.
The steel is well below yield at this stage, which can be confirmed by computing, from
the strain diagram, the steel strain - | = - _, where - _ is the concrete strain at the level
of the steel. It is easily confirmed, also, that the maximum conerete compressive stress
will be well below the proportional limit. The curvature is seen, in Fig. 6,135, 1o be

=== (6.18)

and the corresponding moment is

_ Jeli
s

M, (6.19)
where [, is the moment of inertia of the uncracked transformed section. Equations
(6,18 and (6.19) provide the information needed to plot point | of the moment-
curvature graph of Fig. 6.16a.

P Note that compression reinforcement, oo multiple lavers of wnsion reinforcement, can casily be included in the anadysis with no essential

cormphication.
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FIGURE 6.12
Idealized stress-sirain curves:
() steel; () concrete. fy —

Stress g

Strain €,
(&)

mh_

Linear range
Y
rr')_l_ fr Egy u
Strain €,
(b}
FIGURE 6.13 €< €y fy = €E;
Unecracked beam in the l"— b —'l
elastic range of loading:
{er) transformed cross section: T 1 T ] " —e
(k) strains: (o) stresses and d h ©4 W = 1
forces. | e
(n—1)Ag
€2 (€5 = €pg
—] l ?—P‘ T=Age;E;
€; = €, fa=1f,
(a) (b) (e}

When tensile cracking occurs at the section, the stiffness is immediately reduced,
and curvature increases to point 2 in Fig. 6.16 with no increase in moment. The analy-
sis now is based on the cracked transformed section of Fig. 6.14a, with steel repre-
sented by the transformed area nd, and tension concrete deleted. The cracked, elastic
neutral axis distance ¢ = kd s easily found by the usual methods (see Section 3.3b}.
In the limiting case, the concrete strain just reaches the proportional limit, as shown in
Fig. 6.14h, and, typically, the steel is still below the vield strain. The curvature is eas-
ily computed by

== (6.20)
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FIGURE 6.14

Cracked beam in the elastic
range of material response:
{7} transformed cross section:
by strains; (¢ stresses and
forces.

nA;

FIGURE 6.15

Cracked beam with concrete
in the inelastic range of
loading: (a) cross section;
(B strains; (¢) stresses and
forces.
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€ = g fy = for
I
3 CI1=kd | A I —C
J—GT[— d - kd jo-d-
& . A & S
{a) (b) (c)

and the corresponding moment is

M, = %j",,;kjbf!z (6.21)
as was derived in Section 3.3b. This provides point 3 in Fig. 6.16. The curvature at
point 2 can now be found from the ratio M M,

Next, the cracked. inelastic stage of loading is shown in Fig. 6.15. Here the con-
crete is well into the inelastic range, although the steel has not yet yielded. The neu-
tral axis depth ¢, is less than the elastic &d and is changing with increasing load as the
shape of the concrete stress distribution changes and the steel stress changes.

It is now convenient to adopt a numerical representation of the concrete com-
pressive stress distribution, to find both the total concrete compressive force C and the
location of its centroid, for any arbitrarily selected value of maximum concrete strain
- in this range. The compressive strain diagram is divided into an arbitrary number of
steps (e.g., four, in Fig. 6.15k), and the corresponding compressive stresses for each
strain read from the stress-strain curve of Fig. 6.12h. The stepwise representation of
the actual continuous stress block is integrated numerically to find €, and its point of
application is located, taking moments of the concrete forces about the top of the sec-
tion. The basic equilibrium requirement, C = T, then can be used to find the correct
location of the neutral axis, for the particular compressive strain selected, following an
iterative procedure.

£l = €1 = €, =~
2 %
! %E 1 Wingi F—>C
- b= - -
d z
As |l o ool - B o T €5 7 Epg _LL‘EESES
£ = Agly
(a) (b) (e)
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The entire process can be summarized as follows:

Select any top face concrete strain - | in the inelastic range, i.e., between - and - .
Assume the neutral axis depth, a distance ¢, below the top face,

From the strain diagram geometry, determine - | = -
Compute f, = E.but = f, and T = A f.
Determine C by integrating numerically under the concrete stress distribution
curve.

Check to see if C = T. If not, the neutral axis must be adjusted upward or down-
ward, for the particular concrete strain that was selected in step 1, until equilib-
rium is satisfied. This determines the correct value of ¢,

Fon

o 1

=

Curvature can then be found from

T (6.22)

Cy

The internal lever arm 7 from the centroid of the concrete stress distribution to the ten-
sile resultant, Fig. 6.15¢, is calculated, after which

My, = Cz =Tz (6.23)

The sequence of steps 1 through 6 is then repeated for newly selected values of
concrete strain - . The end result will be a series of points, such as 4, 5, 6, and 7 in
Fig. 6.16. The limit of the moment-curvature plot is reached when the concrete top
face strain equals - . corresponding to point 7. The steel would be well past the vield
strain at this loading, and at the vield stress.

It is important to be aware of the difference between a moment-unit curvature
plot, such as Fig. 6.16, and a moment-rotation diagram for the hinging region of a rein-
forced concrete beam. The hinging region normally includes a number of discrete
cracks, but between those cracks, the uncracked concrete reduces the steel strain, lead-
ing to what is termed the tension stiffening effect. The result is that the total rotation
at the hinge is much less than would be calculated by multiplying the curvature per

7
M, ! I 5 6 — Failure

= ;
5 My —— Proportional limit
5 of concrete
=
Me, — Cracking

Curvature



228

Milson-Darwin-Dolan: 6. Sarviceability Text 5 Tha Mchraw—Hilt

Design of Concrete
Structures, Thirteenth
Edition

Campaenas, 2004

DESIGN OF CONCRETE STRUCTURES  Chapter 6

unit length at the cracked section by the observed or assumed length of the hinging
region. Furthermore, the sharp increase in unit curvature shown in Fig. 6,16 at crack-
ing would not be seen on the moment-rotation plot, only a small, but progressive,
reduction of the slope of the diagram.
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PROBLEMS
6.1, A rectangular beam of width b = 12 in.. effective depth = 20.5 in., and total
depth i = 23 in. spans 18.5 ft between simple supports. It will carry a com-
puted dead load of 1.27 kips/ft including self-weight, plus a service live load
of 2.69 kips/ft. Reinforcement consists of four evenly spaced No. 8 (No. 25)
bars in one row. The clear cover on the sides is 2 in. Material strengths are f, =
60,000 psi and /! = 4000 psi. '
{a) Compute the stress in the steel at full service load, and using the Gergely-
Lutz equation estimate the maximum crack width.
{h) Confirm the suitability of the proposed design based on Fig. (6.3).
6.2.  To save steel-handling costs, an alternative design is proposed for the beam in

Problem 6.1, using two No. 10 (No. 32) Grade 75 bars to provide approxi-
mately the same steel strength as the originally proposed four No. 8 (No. 25)
Grade 60 bars. Check to determine if the redesigned beam is satisfactory with
respect to cracking according to the ACI Code. What modification could you
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suggest that would minimize the number of bars to reduce cost, yet satisfy

requirements of crack control?

For the beam in Problem 6.1:

{a) Calculate the increment of deflection resulting from the first application of
the short-term live load.

(h) Find the creep portion of the sustained load deflection plus the immediate
deflection due to live load.

{c) Compare your results with the limitations imposed by the ACI Code, as

summarized in Tahle 6.2,

Assume that the beam is a part of a floor system and supports cinder block
partitions susceptible to cracking if deflections are excessive.

A beam having b = 12 in., d = 21.5 in., and & = 24 in. is reinforced with three
No. 11 (No. 36) bars. Material strengths are £, = 60,000 psi and £ = 4000 psi.
It is used on a 28 ft simple span to carry a total service load of 2430 Ib/ft. For
this member, the sustained loads include self-weight of the beam plus addi-
tional superimposed dead load of 510 b/, plus 400 Ib/ft representing that part
of the live load that acts more or less continuously, such as furniture, equip-
ment, and time-average occupancy load. The remaining 1220 Ib/ft live load
consists of short-duration loads, such as the brief peak load in the cormdors of
an office building at the end of a working day.

{a) Find the increment of deflection under sustained loads due to creep.

(h) Find the additional deflection increment due to the intermittent part of the

live load.

In your caleulations, you may assume that the peak load is applied almaost
immediately after the building is placed in service, then reapplied intermit-
tently. Compare with ACI Code limits from Table 6.2, Assume that, for this
long-span floor beam, construction details are provided that will avoid damage
to supported elements due to deflections. If ACI Code limitations are not met,
what changes would you recommend to improve the design?

A reinforced concrete beam is continuous over two equal 22 ft spans, simply
supported at the two exterior supports, and fully continuous at the interior sup-
port. Concrete cross-section dimensions are b = Win, h = 22 in, and 4 =
19.5 in. for both positive and negative bending regions. Positive reinforcement
in each span consists of two No. 9 (No. 29) bars, and negative reinforcement
at the interior support is made up of three No. 10 (No. 32) bars. No compres-
sion steel is used, Material strengths are f, = 60,000 psi and £ = 5000 psi.
The beam will carry a service live load, applied early in the life of the mem-
ber, of 1800 Ib/ft distributed uniformly over both spans; 20 percent of this load
will be sustained more or less permanently, while the rest is intermittent. The
total service dead load is 1000 Ib/fft including self-weight.
(g} Find the immediate deflection when shores are removed and the full dead
load is applied.
(h) Find the long-term deflection under sustained load.
() Find the increment of deflection when the short-term part of the live load
is applied.

Compare with ACI Code deflection limits; piping and brittle conduits are
carried that would be damaged by large deflections. Note that midspan deflec-
tion may be used as a close approximation of maximum deflection.
Recaleulate the deflections of Problem 6.5 based on the assumption that 20
percent of the live load represents the normal service condition of loading and
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FIGURE P6.7

6.7.

j 24
3 Mo, 10 (No. 32) +—e—e—e -

is sustained more or less continuously, while the remaining 80 percent is a
short-term peak loading that would probably not be applied until most creep
deflections have occurred. Compare with vour earlier results.

The tensile-reinforced rectangular beam shown in Fig. P6.7 is made using steel
with f, = 60,000 psi and £, = 29,000,000 psi. A perfectly plastic response
after yielding can be assumed. The concrete has a stress-strain curve in com-
pression that may be approximated by the parabolaf. = f/[2 ., = .- ']
where f, and - are the stress and strain in the concrete. The variable - is the
strain at the peak stress = 0.002, and §7 = 4000 psi. The ultimate strain in the
concrete is 0.003. The concrete responds elastically in tension up to the mod-
ulus of rupture f, = 475 psi. Based on this information, plot a curve relating
applied moment to unit curvature at a section subjected to flexural cracking.
Label points corresponding to first cracking, first yielding of steel, and peak
moment.

.




