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ANALYSIS AND DESIGN
FOR TORSION

INTRODUCTION

Reinforced concrete members are commonly subjected to bending moments, to trans-
verse shears associated with those bending moments, and, in the case of columns, to
axial forces often combined with bending and shear. In addition, torsional forces may
act, tending to twist a member about its longitudinal axis. Such torsional forces sel-
dom act alone and are almost always concurrent with bending moment and transverse
shear, and sometimes with axial force as well.

For many years, torsion was regarded as a secondary effect and was not consid-
ered explicitly in design—its influence being absorbed in the overall factor of safety
of rather conservatively designed structures., Current methods of analysis and design,
however, have resulted in less conservatism, leading to somewhat smaller members
that, in many cases. must be reinforced to increase torsional strength. In addition, there
is increasing use of structural members for which torsion is a central feature of behav-
ior: examples include curved bridge girders, eccentrically loaded box beams, and hel-
ical stairway slabs. The design procedures in the ACI Code were first proposed in
Switzerland (Refs, 7.1 and 7.2) and are also included in the European and Canadian
madel codes (Refs. 7.3 and 7.4),

It is useful in considering torsion to distinguish between primary and secondary
torsion in reinforced concrete structures. Primary rorsion, sometimes called egquifib-
rium torsion or statically determinate torsion, exists when the external load has no
alternative load path but must be supported by torsion. For such cases. the torsion
required to maintain static equilibrium can be uniquely determined. An example is the
cantilevered slab of Fig. 7.1a. Loads applied to the slab surface cause twisting
moments #1, to act along the length of the supporting beam. These are equilibrated by
the resisting torque T provided at the columns. Without the torsional moments, the
structure will collapse,

In contrast to this condition, secondary torsion, also called compatibility torsion
or statically indeterminate torsion, arises from the requirements of continuity, i.e.
compatibility of deformation between adjacent parts of a structure. For this case, the
torsional moments cannot be found based on static equilibrium alone. Disregard of con-
tinuity in the design will often lead to extensive cracking, but generally will not cause
collapse. An internal readjustment of forces is usually possible and an alternative equi-
librium of forces found. An example of secondary torsion is found in the spandrel or
edge beam supporting a monolithic conerete slab, shown in Fig. 7.15. If the spandrel
beam is torsionally stiff and suitably reinforced. and if the columns can provide the nec-
essary resisting torque 7, then the slab moments will approximate those for a rigid exte-
rior support as shown in Fig. 7.1c. However, if the beam has little torsional stiffness and
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FIGURE 7.1
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Torsional effects in
reinforced concrete:

(@) primary or equilibrium
torsion at a cantilevered
slab: (b} secondary or
compatibility torsion at
an edge beam: () slab
moments if edge beam is
stiff rorsionally: () slab
moments if edge beam is
flexible torsionally.
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inadequate torsional reinforcement, cracking will occur to further reduce its torsional
stiffness, and the slab moments will approximate those for a hinged edge, as shown in
Fig. 7.1d. If the slab is designed to resist the altered moment diagram, collapse will
not oceur (see discussion in Section 12,100,

Although current technigques for analysis permit the realistic evaluation of tor-
sional moments for statically indeterminate conditions as well as determinate, design-
ers often neglect secondary torsional effects when torsional stresses are low and alter-
native equilibrium states are possible. This is permitted according to the ACI Code and
many other design specifications. On the other hand, when torsional strength is an
essential feature of the design, such as for the bridge shown in Fig. 7.2, special analy-
sis and special torsional reinforcement is required, as described in the remainder of
this chapter.

Torsion IN Prain ConNcrRETE MEMBERS

Figure 7.3 shows a portion of a prismatic member subjected to equal and opposite
torques T at the ends, If the material is elastic, 5t. Venant's torsion theory indicates that
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FIGURE 7.2

Curved continuous beam
bridge, Las Yegas, Mevada,
designed for torsional effects.
(Cowrresy of Portdand Cemens

Assorciation. )

FIGURE 7.3
Stresses caused by rorsion,

torsional shear stresses are distributed over the cross section, as shown in Fig. 7.35.
The largest shear stresses occur at the middle of the wide faces. If the material deforms
inelastically, as expected for concrete, the stress distribution is closer to that shown by
the dashed line.
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Shear stresses in pairs act on an element at or near the wide surface, as shown in
Fig. 7.3a. As explained in strength of materials texts, this state of stress corresponds
to equal tension and compression stresses on the faces of an element at 45° to the
direction of shear. These inclined tension stresses are of the same kind as those caused
by transverse shear, discussed in Section 4.2, However, in the case of torsion, since
the torsional shear stresses are of opposite sign on opposing sides of the member
(Fig. 7.3h), the corresponding diagonal tension stresses are at right angles to each
other (Fig. 7.3a).

When the diagonal tension stresses exceed the tensile resistance of the concrete,
a crack forms at some accidentally weaker location and spreads immediately across
the beam, The value of torque corresponding to the formation of this diagonal crack is
known as the cracking torgue T,

There are several ways of analyzing members subjected to torsion. The nonlinear
stress distribution shown by the dotted lines in Fig. 7.35 lends itself to the use of the
thin-walled tube, space truss analogy. Using this analogy, the shear stresses are treated
as constant over a finite thickness ¢ around the periphery of the member, allowing the
beam to be represented by an equivalent tube, as shown in Fig. 7.4, Within the walls of
the tube, torque is resisted by the shear flow g, which has units of force per unit length,
In the analogy, ¢ 1s treated as a constant around the perimeter of the tube. As shown in
Fig. 7.4, the resultants of the individual components of shear flow are located within
the walls of the tube and act along lengths v, in the vertical walls and along lengths x,
in the horizontal walls, with v, and x, measured at the center of the walls,

The relationship between the applied torque and the shear flow can be obtained
by summing the moments about the axial centerline of the tube, giving

T=2gxv, 2+ 2gvx, 2 (e}

AL

where the two terms on the right-hand side represent the contributions of the horizon-
tal and vertical walls to the resting torque. respectively, Thus.,

T=2qy, (B)
The product x,y, represents the area enclosed by the shear flow path A, giving
T =244, (e}
and
T

= d

L
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Note that, although A, is an area. it derives from the moment caleulation shown in Eqg.
(a) above, Thus, A 1s applicable for hollow box sections. as well as solid sections, and
in such case includes the area of the central void.

For a tube wall thickness f, the unit shear stress acting within the walls of the

tube is
i T
=== 7.1
I 24, .0
As shown in Fig. 7.3a. the principal tensile stress - = -, Thus, the concrete will
crack only when - = - = f;, the tensile strength of conerete. Considering that con-

crete is under biaxial tension and compression, f; can be conservatively represented
by 4 f; rather than the value typically used for the modulus of rupture of concrete,
which is taken as f, = 7.5 f; for normal-density concrete. Substituting - = =
4. f; in Eq. (7.1) and solving for T gives the value of the cracking torque:

T,=4 f. 2A, (7.2)

Remembering that A, represents the area enclosed by the shear flow path, A,
must be some fraction ol the area enclosed by the outside perimeter of the full con-
crete cross section A,. The value of ¢ can, in general, be approximated as a fraction of
the ratio A, p,,,, where p,, is the perimeter of the cross section. For solid members
with rectangular cross sections, f is typically one-sixth o one-fourth of the minimum
width. Using a value of one-fourth for a member with a width-to-depth ratio of 0.5
yields a value of A approximately equal to % A For the same member, 1 = %Arp- Pepe

Using these values for A, and 1 in Eq. (7.2) gives

_ AL
To=4 f;

in-1b (7.3}
Pep

It has been found that Eq. (7.3) gives a reasonable estimate of the cracking torque of

solid reinforced concrete members regardless of the cross-sectional shape. For hollow

sections, T, in Eq. (7.3} should be reduced by the ratio A_-A_,. where A is the gross

cross section of the concrete, i.e., not including the area of the voids (Ref. 7.5).

TorsioN IN REINFORCED CONCRETE MEMBERS

To resist torsion for values of T above T . reinforcement must consist of closely
spaced stirrups and longitudinal bars. Tests have shown that longitudinal bars alone
hardly increase the torsional strength, with test results showing an improvement of at
most 15 percent (Ref. 7.5). This is understandable because the only way in which lon-
gitudinal steel can directly contribute to torsional strength is by dowel action, which
is particularly weak and unreliable if longitudinal splitting along bars is not restrained
by transverse reinforcement. Thus, the torsional strength of members reinforced only
with longitudinal steel is satisfactorily, and somewhat conservatively, predicted by
Eqs. (7.2) and (7.3).

When members are adequately reinforced. as in Fig. 7.5a4, the concrete cracks at
a torque that is equal to or only somewhat larger than in an unreinforced member, as
given by Eg. (7.3). The cracks form a spiral pattern, as shown in Fig. 7.55. Upon
cracking. the torsional resistance of the concrete drops to about half of that of the
uncracked member, the remainder being now resisted by reinforcement. This redistri-
bution of internal resistance is reflected in the torque-twist curve (Fig. 7.6), which at
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FIGURE 7.5

Reinforced concrete beam
in torsion: {a) torsional
reinforcement; (0} torsional
cracks,

FIGURE 7.6
Torgque-twist curve in
reinforced concrete member.
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the cracking torque shows continued twist at constant torque until the internal forces
have been redistributed from the concrete to the steel. As the section approaches the
ultimate load, the concrete outside the reinforcing cage cracks and begins to spall off,
contributing progressively less to the torsional capacity of the member.

Tests show that, after cracking, the area enclosed by the shear path is defined by
the dimensions x, and v, measured to the centerline of the outermost closed transverse
reinforcement, rather than to the center of the tube walls as before. These dimensions
define the gross area A, = x_v, and the shear perimeter p, = 2(x, + v,) measured at
the steel centerline.

Analysis of the torsional resistance of the member is aided by treating the mem-
ber as a space truss consisting of spiral concrete diagonals that are able to take load
parallel but not perpendicular to the torsional cracks, transverse rension tie members
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that are provided by closed stitrups or ties, and rension chords that are provided by
longitudinal reinforcement. The hollow-tube, space truss analogy represents a simpli-
fication of actual behavior, since, as will be demonstrated. the calculated torsional
strength is controlled by the strength of the transverse reinforcement, independent of
concrete strength, Such a simplification will be used here because it aids understand-
ing. although it greatly underestimates torsional capacity and does not reflect the
higher torsional capacities obtained with higher concrete strengths (Refs, 7.6 and 7.7).

With reference to Fig. 7.7, the torsional resistance provided by a member with a
rectangular cross section can be represented as the sum of the contributions of the
shears in each of the four walls of the equivalent hollow twbe, The contribution of the
shear acting in the right-hand vertical wall of the tube to the torsional resistance, for
example, is

V—‘l Ao

Iy=—

(a)

Following a procedure similar to that used for analyzing the variable angle truss
shear model discussed in Section 4.8 and shown in Figs. 4.19 and 4.20, the equilib-
rium of a section of the vertical wall—with one edge parallel to a torsional crack with
angle - —can be evaluated using Fig. 7.84. Assuming that the stirrups crossing the
crack are yielding, the shear in the wall under consideration is

Vy = Afn (b

where A, = area of one leg of a closed stirrup
i = vield strength of transverse reinforcement

n = number of stirrups intercepted by torsional crack

Since the horizontal projection of the crack is v, cot - and n = y, cot - -5 where
- 15 the slope angle of the strut and s is the spacing of the stirrups,
lAI‘ _\'\'.-FH

V, = : cot - {c)

Combining Eqgs. {(¢) and (a) gives

"4 -'f.\"u'.er Iﬁ
T, = T cot - (d)
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FIGURE 7.8

Basis for rorsional design:
() vertical tension in
stirrups: (h) diagonal
compression in vertical wall
of beam: {¢) equilibrinm
diagram of forces due o
shear in vertical wall,
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It is easily shown that an identical expression is obtained for each horizontal and ver-
tical wall. Thus, summing over all four sides, the nominal capacity of the section is

4 2A fLvx,
I,= ﬂ=%cﬂl- (&)
i=1 h

Noting that v x, = A ,, and rearranging slightly gives

St
Mr}n’l‘ﬂ'fj;'\'
f col -

"

(7.4)

The diagonal compression struts that form parallel to the torsional cracks are
necessary for the equilibrium of the cross section. As shown in Fig, 7.8b and ¢, the
horizontal component of compression in the struts in the vertical wall must be equili-
brated by an axial tensile force AN,. Based on the assumed uniform distribution of
shear flow around the perimeter of the member, the diagonal stresses in the struts must
be uniformly distributed, resulting in a line of action of the resultant axial force that
coincides with the midheight of the wall. Referring to Fig. 7.8¢, the total contribution
of the right-hand vertical wall to the change in axial force of the member due to the
presence of torsion is

N, = Voot = mcntz-

Again, summing over all four sides, the total increase in axial force for the member is

4 At
N=_ N, = ‘f‘ 2.x, + v, cott (7.5a)

i=1 -

N=

A .1‘1.-' H -
g cot” (7.5h)

where p,, is the perimeter of the centerline of the closed stirrups.
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Longitudinal reinforcement must be provided to carry the added axial force AN,
If that steel is designed 1o vield, then

A f .
Ay = “f-’_ Ph ot (7.6)
and
A fe
A = T‘ph J‘Tcm- : (7.7}
: bl

where A, = total area of longitudinal reinforcement to resist torsion, in’
iy = vield strength of longitudinal torsional reinforcement, psi

It has been found experimentally that, atter cracking, the effective area enclosed
by the shear flow path is somewhat less than the value of A, used in the previous
development. It is recommended in Ref. 7.7 that the reduced value be taken as A, =
(0.85A4,;,, where, it will be recalled, A, is the area enclosed by the centerline of the
transverse reinforcement. This recommendation is incorporated in the ACI Code (see
Section 7.5) and in a modified form of Eqg. (7.4) with A, substituted for 4 . It has fur-
ther been found experimentally that the thickness of the equivalent tube at loads near
ultimate is closely approximated by r = A, p,. where p, is the perimeter of A .

TorsiON PLus SHEAR

Members are rarely subjected to torsion alone, The prevalent sitwation is that of a
beam subject to the usual flexural moments and shear forees, which, in addition, must
also resist torsional moments. In an uncracked member, shear forces as well as torque
produce shear stresses. In a cracked member, both shear and torsion increase the
forces in the diagonal struts (Figs, 4,204 and 7.86), they increase the width of diago-
nal cracks, and they increase the forces required in the transverse reinforcement (Figs,
4.20¢ and 7.84).

Using the usual representation for reinforced conerete, the nominal shear stress
caused by an applied shear force Vis -, = V. b, 4. The shear stress caused by torsion,
given in Eq. (7.1)is -, = T-(2A_1). As shown in Fig 7.9a for hollow seciions, these
stresses are directly additive on one side of the member, Thus, for a cracked concreme
cross section with A, = 0.854 , and 1 = A_; p,. the maximum shear stress can be
expressed as

v T;
=. + = — + P.’lz
b 174

oh

(7.8}

FIGURE 7.9
Addition of worsional and r—
shear stresses: (a) hollow | |
section: {f) solid section. ll TT‘ ll ll H‘ | |TT l l l l
(Adapred from Refl 7.7} | |
Torsional Shear Torsional Shear
stresses stresses siresses stresses

(&) (b)
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For a member with a solid section. Fig. 7.9b, - is predominately distributed
around the perimeter, as represented by the hollow tube analogy, but the full cross sec-
tion contributes to carrying - . Comparisons with experimental results show that Eq.
(7.8) is somewhat overconservative for solid sections and that a better representation
for maximum shear stress is provided by the square root of the sum of the squares of
the nominal shear stresses:

v I,

hd a3, 79

Equations (7.8) and (7.9) serve as a measure of the shear stresses in the concrete
under both service and ultimate loading.

ACI| CopEe Provisions FOR TORSION DESIGN

The basic principles upon which ACIH Code design provisions are based have been pre-
sented in the preceding sections, ACI Code 11.6.3.5 safety provisions require that

T,= T, (7.10)

where T = required torsional strength at factored loads

o

T, = nominal torsional strength of member

The swength reduction factor - = 0.75 applies for torsion. T, is based on Eq. (7.4)
with A, substituted for A ;. thus

C24A
hY

cot (7.11})

L

In accordance with ACI Code [1.6.2, sections located less than a distance d from
the face of a support may be designed for the same torsional moment T, as that com-
puted at a distance o, recognizing the beneficial effects of support compression.
However, if a concentrated torque is applied within this distance, the critical section
must be taken at the face of the support. These provisions parallel those used in shear
design. For beams supporting slabs such as are shown in Fig. 7.1, the torsional load-
ing from the slab may be treated as being uniformly distributed along the beam.

T Beams and Box Sections

For T beams, a portion of the overhanging flange contributes to the cracking torsional
capacity and. if reinforced with closed stirrups, to the torsional strength. According to
ACI Code 11.6.1. the contributing width of the overhanging flange on either side of
the web is equal to the smaller of (1) the projection of the beam above or below the
slab, whichever is greater, and (2} four times the slab thickness. These criteria are the
same as those used for two-way slabs with beams, illustrated in Fig. 13.10. As with
solid sections, Ar.p for box sections. with or without flanges. represents the area
enclosed by the outside perimeter of the concrete section.

After torsional cracking. the applied torque is resisted by the portion of the sec-
tion represented by 4 ,. the area enclosed by the centerline of the outermost closed
transverse torsional reinforcement. A, for rectangular, box, and T sections is illus-
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trated in Fig. 7.10. For sections with flanges, the Code does not require that the sec-
tion used to establish A_, coincide with that used to establish A

ol

Minimal Torsion

If the factored torsional moment T, does not exceed - F -Af.,,- P - torsional effects
may be neglected, according to ACI Code 11.6.1. This lower limit is 25 percent of the
cracking torque, given by Eq. (7.3), reduced by the factor - |, as usual, for design pur-
poses, The presence of torsional moment at or below this limit will have a negligible
effect on the flexural and shear strength of the member.
For members subjected to an axial load N, (positive in compression), tor-
sional effects may be neglected when T, does not exceed - - f -Af].,- Pep
I+ N, 44, f . For hollow sections {(with or without axial load). Aq, must be
replaced by the gross area of the concrete A, to determine if torsional effects may be
neglected. This has the effect of multiplving 25 percent of the cracking torque by the
ratio A, A, twice—once to account for the reduction in cracking torque for hollow
sections from the value shown in Eq. (7.3) and a second time to account for the tran-
sition from the circular interaction of combined shear and torsion stresses in Eq. (7.9)
to the linear interaction represented by Eq. (7.8).

Equilibrium versus Compatibility Torsion

A distinction is made in the ACI Code between equilibrium (primary) torsion and
compatibility (secondary) torsion. For the first condition, described earlier with ref-
erence to Fig. 7.1g, the supporting member must be designed to provide the torsional
resistance required by static equilibrium. For secondary torsion resulting from com-
patibility requirements, shown in Fig. 7.15. it is assumed that cracking will result in
a redistribution of internal forces: and according to ACI Code 11.6.2. the maxi-
mum torsional moment T, may be reduced to 4 - f; 'AF'.'? Popsord - f -A;":.,- Pop’

I+ N, 44, f. for members subjected to axial load. In the case of hollow sec-
tions, A, is not replaced by A, The design moments and shears in the supported mem-
ber must be adjusted accordingly. The reduced value of T, permitted by the ACI Code is
intended to approximate the torsional cracking strength of the supporting beam. for com-
bined torsional and flexural loading. The large rotations that occur at essentially constant
torsional load would result in significant redistribution of internal forces, justifying use
of the reduced value for design of the torsional member and the supported elements.
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d.

Limitations on Shear Stress

Based largely on empirical observations, the width of diagonal cracks caused by com-
bined shear and torsion under service foads can be limited by limiting the calculated
shear stress under faciored shear and rorsion (Ref, 7.4) so that
V. —
+ 8- f (7.12)

erHM' C
b
W

Voo I Eq. (7.12) corresponds to the upper limits on shear capacity described in
Section 4.5d. Combining Eq. (7.12) with Eq. (7.8) provides limits on the cross-
sectional dimensions of hollow sections, in accordance with ACI Code 11.6.3.

Vo T _ V.

= ot 8 [ 7.13
bod  LTAY b, / (713

Likewise, for solid sections, combining Eq. (7.12) with Eq. (7.9) gives

Ver : + F".;r.ph : - v: + 8 = 714
bod 74, bd B (7.14)

Either member dimensions or concrete strength must be increased if the criteria
in Eq. (7.13) or (7.14) are not satisfied.

ACI Code 11.6.3 requires that, if the wall thickness varies around the perimeter
of a hollow section, Eq. (7.13) must be evaluated at the location where the left-hand
side of the expression is a maximum. If the wall thickness is less than the assumed
value of ¢ used in the development of Eq. (7.8) A ;- p,. the actual value of + must be
used in the calculation of torsional shear stress. As a result, the second term on the left-
hand side of Eq. (7.13) must be taken as

Tlr
1.7A,,f

where 1 1s the thickness of the wall of the hollow section at the location where the
stresses are being checked.

Reinforcement for Torsion

The nominal torsional strength is given by Eq. (7.11).

2A,A fiv
?:r:Tcm' (7.11)

According to ACI Code 11.6.3, the angle - may assume any value between 307
and 607, with a value of - = 45 suggested. The area enclosed by the shear flow 4
may be determined by analysis using procedures such as suggested in Ref. 7.8, or 4
may be taken as equal to (L854 ;. Combining Eq. (7.11) with Eq. (7.10), the required
cross-sectional area of one stirmup leg for torsion is

1.5

A =—
‘T2 Af, cot

(7.15)

The Code limits . to a maximum of 60,000 psi for reasons of crack control.
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The reinforcement provided for torsion must be combined with that required for
shear. Based on the typical two-leg stirrup, this may be expressed as
A\- te A'r Ar
— ==+ 2— (7.16)
8 § &

As described in Section 7.3, the transverse stirrups used for torsional reinforce-
ment must be of a closed form to provide the required tensile capacity across the diag-
onal cracks of all faces of the beam. U-shaped stirrups commonly used for transverse
shear reinforcement are not suitable for torsional reinforcement. On the other hand,
one-piece closed stirrups make field assembly of beam reinforcement difficult, and for
practical reasons torsional stirmups are generally two-piece stirrup-ties, as shown in
Fig. 7.11. A U-shaped stirrup is combined with a horizontal top bar, suitably anchored.

Because concrete outside the reinforcing cage tends to spall off when the mem-
ber is subjected to high torque, transverse torsional reinforcement must be anchored
within the concrete core (Ref. 7.9). ACI Code 11.6.4 requires that stirrups or ties used
for transverse longitudinal reinforcement must be anchored with a 1357 standard hook
around a longitudinal bar, unless the conerete surrounding the anchorage is restrained
against spalling by a flange or a slab, in which case 90° standard hooks may be used,
as shown in Fig. 7.11a b, and . Overlapping U-shaped stirrups, such as shown in
Fig. 5.124d, may not be used. If flanges are included in the computation of torsional
strength for T or L-shaped beams, closed torsional stirups must be provided in the
tlanges, as shown in Fig. 7.11e.

The required spacing of closed stirrups. satisfying Eq. (7.16), is selected for the
trial design based on standard bar sizes.

To control spiral cracking. the maximum spacing of torsional stirrups should not
exceed p- 8 or 12 in., whichever is smaller. In addition, for members requiring both
shear and torsion reinforcement, the minimum area of closed stirrups is equal to
b5 b,s
= 50

A+ 24, =075 f — :
.f,w .f,w

(7.17)

according to ACI Code 11.6.5.
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The area of longitudinal bar reinforcement A, required to resist torsion is given
by Eq. (7.7}, where - must have the same value used to calculate 4, The term 4, s in
Eq. (7.7) should be taken as the value calculated using Eq. (7.15), not modified based
on minimum transverse steel requirements. ACI Code 11.6.3 permits the portion of A,
in the flexural compression zone to be reduced by an amount equal to M- (0.9df,,).
where M, is the factored moment acting at the section in combination with 7.

Based on an evaluation of the performance of reinforced concrete beam torsional
test specimens, ACI Code 11.6.5 requires that 4, not be less than

Apin = CT P = (7.18)
where A, 5 = 25b, . with f in psi.

The spacing of the longitudinal bars should not exceed 12 in., and they should
be distributed around the perimeter of the cross section to control eracking. The bars
may not be less than No. 3 (No. 1) in size nor have a diameter less than 0.042 times
the spacing of the transverse stirrups. At least one longitudinal bar must be placed at
each corner of the stirrups. Careful attention must be paid to the anchorage of longi-
tudinal torsional reinforcement so that it is able to develop its vield strength at the face
of the supporting columns, where torsional moments are often maximum.

Reinforcement required for torsion may be combined with that required for other
forces, provided that the area furnished is the sum of the individually required areas and
that the most restrictive requirements of spacing and placement are met. According to
ACI Code 11.6.6, torsional reinforcement must be provided at least a distance b, + o
beyond the point theoretically required. where f, is the width of that part of the cross
section containing the closed stirrups resisting torsion. According to the provisions of the
ACI Code. the point at which the torsional reinforcement is no longer required is the
point at which 7, -~ fo A2, p, . or T, < fi Al.p, 1T+ N, 4A,. ..
for members subjected to axial load. The value is 25 percent of the cracking torque,
reduced by the factor - . as given in Section 7.5b.

The subject of torsional design of prestressed concrete is not treated here, but. as
presented in ACI Code 11.6, it differs only in certain details from the above presenta-
tion for nonprestressed reinforced concrete beams.

Lightweight Concrete

As discussed in Section 4,5a, the ACI Code recognizes that lightweight conerete pos-
sesses lower tensile strength than normal-weight concrete of the same compressive
strength. The provisions in ACI Code 11.2 apply the same criteria to members loaded
in torsion as to members loaded in shear: f,- 6.7 is substituted for - . in all applicable
equations, with the additional restriction that f,- 6.7 shall not exceed - f:. If the split-
cylinder strength ), is not available, - f; must be multiplied by 0.75 for all-lightweight
concrete and by (L85 for sand-lightweight concretce,

Design for Torsion

Designing a reinforced conerete flexural member for torsion involves a series of steps.

The following sequence ensures that each is covered:
1. Determine if the factored torque is less than - E-Af.y- PeoprsOr - fi A S P
I+ N, 44, f.  for members subjected to axial load. If so, torsion may be
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neglected. If not, proceed with the design. Note that in this step, portions of over-
hanging flanges. as defined in Section 7.5a, must be included in the calculation
of A, and p,.

2. If the torsion is compatibility torsion. rather than eguilibrium torsion, as

described in Sections 7.1 and 7.5¢. the maximum factored torque may be reduced
tod - f, -Aﬁp-p‘.p-, or 4 - f; -A?.P P 1+ N dA, - for members sub-
jected to axial load, with the moments and shears in the supported members
adjusted accordingly. Equilibrium torsion cannot be adjusted.

3. Check the shear stresses in the section under combined torsion and shear using

the criteria of Section 7.5d.

4. Calculate the required transverse reinforcement for torsion using Eq. (7.15) and

shear using Eq. (4.14a). Combine A, and A, using Eq. (7.16).

5. Check that the minimum transverse reinforcement requirements are met for both

torsion and shear. These include the maximum spacing. as described in Sections
7.5e and 4.5d, and minimum area, as given in Eq. (7.17).

6. Calculate the required longitudinal torsional reinforcement A; using the larger of

the values given in Egs. (7.7) and (7.18). and satisfy the spacing and bar size
requirements given in Section 7.5e. The portion of A, in the flexural compression
zone may be reduced by M- (0.94f,,), providing that Eq. (7.18) and the spacing
and bar size requirements are satisfied.

7. Continue torsional reinforcement b, + d past the point where T, is less than

EXAMPLE 7.1

o IK-AEP-;;‘.F-, or - - fAf’w P 1+ N, dA, fo for members subjected
to axial load.

Design for torsion with shear.  The 28 ft span beam shown in Fig, 7.12a and b carries a
monolithic slab cantilevering & ft past the beam centerline. The resulting L beam supports a
live load of 200 Ib/ft along the beam centerling plus 50 psf uniformly distributed over the
upper slab surface. The effective depth to the flexural steel centroid is 21.5 in., and the dis-
tance from the beam surfaces to the centroid of stirmup steel is 15 in. Material strengths are
fro= 3000 psi and f, = 60,000 psi. Design the torsional and shear reinforcement for the
beam.

Sovvmion,  Applying ACT load factors gives the slab load as

L2w, = L2 X 75 X 55 = 49510b-fi
Low, = 1.6 x50 % 55 =440 1b-fi

Total = 935 Ib- ft at 3.25 ft eccentricity

while the beam carries directly

12w, = 1.2 x 300 360 Ib fr

Low, = 1.6-900 + 50- = 1520 Ib-fi

Total = 1880 1b fi
Thus, the uniformly distributed load on the beam is 2815 Ib/ft, acting together with a uni-
formly distributed torque of 935 % 325 = 3040 ft-lb/ft. At the face of the columm, the

design shear force is V, = 2.815 X 28 2 = 39.4 kips. At the same location, the design tor-
stonal moment is T, = 3.040 > 28 2 = 42,6 fi-kips.
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The variation of ¥V and T, with distance from the face of the supporting column is given
by Fig. 7.12¢ and o, respectively. The values of V, and T, at the eritical design section, a dis-
tance « from the column face, are

1221

L'Jr = 304 w = 34.4 kaps
- 14 !

]

]
T, =426 %
' 14

= 372 fi-kips
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For the effective beam, A, = 12 % 24 + 6 % 18 = 396 in® and P, =2 X124+ 2X30
= |08 in. According to the ACI Code. torsion may be neglected if T, = 075
- 5000-396% 108 12,000 = 6.4 ft-kips, Torsion must clearly be considered in the present
case. Since the torsional resistance of the beam is required for equilibrivm, no reduction in
T, may be made.

Before designing the wrsional reinforcement, the section will be checked for adeguacy
in accordance with Eq. (7.14). Although A, was calculated considering the flange to check
if torsion could be neglected (as required by ACI Code 11.6.1}, subsequent calculations for
serviceability and strength will neglect the fange and no torsional reinforcement will be
provided in the flange. For reference. bd = 12 % 21.5 = 258 in®. With 13 in. cover to the
center of the stimup bars from all faces, x, = 12 — 35 =85 m. and v, = 240 - 35 =
20.5 in. Thus, A, = 83 X 205 = 174 in?, A, = 0.85 % 174 = 148 in?, and p, = 2(85 +
2005} = 58 in. Using Eq. (7.14}),

El

4.4 . 372 % 12 % 58 ¢ _ b7
258 1.7 % 1747 1000

0,520 ksi = 0.530 ksi

<20 5000 + 8- 5000

Therefore, the cross section 1s of adequate size for the given concrete strength.
The values of A, and A, will now be calculated at the column face (for reference only).
Using Eq. (7.15) and choosing - = 457,

_ Ty
2 A, f,cot-

- 42.6 % 125
2% 075 X 148 X 60 X |

A,

= (L0384

tor one leg of a closed vertical stirrup, or 0.0768s for two legs,
The shear capacity of the concrete alone, obtained using Eq. (4.125), is

V=075 % 2 F obd

075 2. 5000 % 258
10K

= 274 kips

From Eq. (4. 14a), the web reinforcement for transverse shear, again computed at the column

face, is

V- Ves 394 - 2745
Cpd 075 % 60 % 215

A = = (L.0124s

to be provided in two vertical legs.

The calculated value of A, will decrease linearly to zero at the midspan, and the calcu-
lated value of A, will deerease linearly 1o zero 4.26 11 from the face of the support, the poini
at which ¥, = - V.. Thus, the total area to be provided by the two vertical legs is

x X
24, + A, = 007685 | iz + 001245 1 16

for 0 = x = 426 fi., where v is the distance from the face of the support, and

24, + A, = 0.0768s | — l%-

for 4.26 = v = 14 fi.
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Number 4 (No. 13) closed stirrups will provide a total area in the two fegs of 0,40 in?,
For 24, + A, = 0.40 in®, the required spacing at o and at 2 ft intervals along the span can
be found using the given relationships between stirrup area and spacing:

gy = 539in
= 552in,
s,= T19in
S5 = 9.11in,
sy = 12210,
s = 182 in.

These values of » are plotted in Fig. 7.12¢. ACI provisions for maximum spacing should now
be checked. For torsion reinforcement, the maximum spacing is the smaller of

Py 58 :

3 3 71.251n.
or 12 in., whereas for shear reinforcement, the maximuom spacing is d 2 = 1075 in. = 24
in. The most restrictive provision is the first, and the maximum spacing of 7.25 in. is plot-
ted in Fig, 7.12¢. Stirrups between the face of the support and the distance o can be spaced
at s, The resulting spacing requirements are shown by the solid line in the figure. These
requirements are met in a practical way by No. 4 (No. 13) closed stirrups, the first placed
2 in. from the face of the column, followed by @ at 3 in. spacing and 17 at 7 in. spacing.
According to the ACTE Code, stitrups may be discontinued at the point where V, < - V.2
4.9 ft from the span centerline) or {b, + o) = 2.8 fi past the point at which T, <
- f-r‘lf,,- . The latter point is past the centerlineg of the member; therefore, minimom
stirrups are required throughout the span. The minimum weh steel provided, 0.40 in®, satis-
fies the ACT Code minimum = 0,75 f,—h,,,.s-,fn. = {175 5000 12 x 7 60,000 = 0.074 in’
= 50k, s £, = 50 = 12 % 760,000 = 0,070 in’,

The longitudinal steel required for torsion at a distance o from the column face is com-

puted next. At that location

% —omsd 1 — 22 gomas

and from Eq. (7.7)
A, = 00335 > 58 % % * 1% = 1,94 ip”

with a total not less than given by Eq. (7.18), in which A, v is not to be taken less than
25 X 12-60,000 = 0.005.
5 5000 = 396 60 4
Appin = o0 % 1000 0.0335 = 58 = oo (.39 in
According to the ACI Code, the spacing must not exceed 12 in., and the bars may not be
less than No. 3 (No. 103 in size nor have a diameter less than 00425 = 0.29 in. Reinforcement
will be placed at the top. middepth, and bottom of the member—each level to provide not less
than 1.94-3 = (.65 in”*. Two No. 6 (No. 19) bars will be used at middepth. and reinforcement
to be placed for flexure will be increased by 0,65 in” at the top and battom of the member.
Although A, reduces in direct proportion to A, and. hence, decreases linearly starting at o
from the face of the column to the midspan, for simplicity of construetion the added bars
and the increment in the flexural steel will be maintained throughout the length of the mem-
ber. Although ACT Code 11.6.3 states that A, may be decreased in flexural compression
zones by an amount equal to M, - {0.9df,,). that reduction will not be made here. Adequate
embedment must be provided past the face of the column to fully develop £, in the bars at
that location. '
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PROBLEMS

T.1. A beam of rectangular cross section having » = 22 in. and / = 15 in. is o

carry o total factored load of 3300 Ib/ft uniformly distributed over its 26 i
span, and in addition the beam will be subjected to a uniformly distributed tor-
sion of 1730 ft-1b/Mt at factored loads. Closed stirrup-ties will be used w pro-
vide for flexural shear and torsion. placed with the stirrup steel cemtroid
1.75 in. from each concrete face. The corresponding flexural effective depth
will be approximately 12.5 in. Design the tansverse reinforcement for this
beam and calculate the increment of longitudinal steel area needed to provide
for torsion using £ = 4000 psi and f, = 60,000 psi.

7.2, Architectural and clearance requirements call for the use of a transfer girder,

FIGURE P7.2
Transfer givder: {a) top view:

(b frone view: (¢} side view, L

S

shown in Fig, P7.2, spanning 20 1 between supporting column faces. The
girder must carry from above a concentrated column load of 17.5 kips at
midspan, applied with eccentricity 2 ft from the girder centerline. (Load fac-
tors are already included, as is an allowance for girder self-weight.) The mem-

o
|_| [
{a)
20 kips 20 kips oy
‘/_,_ T
| =

F

(b) (c)
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ber is to have dimensions b = [0 in, h = 20in, x, = 6.5 in., v, = 16.5in,,
and d = 17 in. Supporting columns provide full torsional rigidity; flexural
rigidity at the ends of the span can be assumed to develop 40 percent of the
maximum moment that would be obtained if the girder were simply supported.
Design both transverse and longitudinal steel for the beam. Material strengths
are [ = 5000 psi and f, = 60,000 psi.

7.3, The beam shown in cross section in Fig, P7.3 is a typical interior member of a
continuous building frame, with span 30 ft between support faces, At factored
loads, it will carry a uniformly distributed vertical load of 3100 Ib/ft, acting
simultaneously with a uniformly distributed torsion of 2600 ft-1b/ft. Transverse
reinforcement for shear and torsion will consist of No, 4 (No. [3) stirrup-ties,
as shown, with 1.5 in. clear to all concrete faces, The effective depth to flex-
ural steel is taken equal to 22.5 in. for both negative and positive bending
regions, Design the transverse reinforcement for shear and torsion, and calcu-
late the longitudinal steel to be added to the flexural requirements to provide
for torsion, Torsional reinforcement will be provided only in the web, not in
the flanges, Material strengths are f = 4000 psi and f, = 60,000 psi.

FIGURE P7.3 N L:I5
| — ]
25" 22.5° MNo. 4 (Mo. 13) stirrup-ties
| |/
h— 14—

74. The single-span T beam bridge described in Problem 3.14 is reinforced for
flexure with four No. 10 (No. 32) bars in two layers, which continue uninter-
rupted into the supports, permitting a service live load of 1.50 kips/ft to be car-
ried, in addition to the dead load of 0.93 kip/ft, including selt-weight. Assume
now that only half that live load acts but that it is applied over only half the
width of the member, entirely to the right of the section centerline. Design the
transverse reinforcement for shear and torsion. and caleulate the modified lon-
gitudinal steel needed for this eccentric load condition. Torsional reinforce-
ment can be provided in the slab if needed. as well as in the web. Stirrup-ties
will be No. 3 or No. 4 (No. 10 or No. 13) bars, with 1.5 in. clear to all concrete
faces. Supports provide no restraint against flexural rotations but do provide
full restraint against twist. Show a sketch of your final design, detailing all
reinforcement. Material strengths are as given for Problem 3.14.



