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SHORT COLUMNS

INTRODUCTION: AXIAL COMPRESSION

Columns are defined as members that carry loads chiefly in compression. Usually
columns carry bending moments as well, about one or both axes of the cross section,
and the bending action may produce tensile forces over a part of the cross section.
Even in such cases, columns are generally referred to as compression members,
because the compression forces dominate their behavior, In addition to the most com-
mon type of compression member, Le., vertical elements in structures, compression
members include arch ribs, rigid frame members inclined or otherwise, compression
elements in trusses, shells, or portions thereof that carry axial compression, and other
forms. In this chapter the term cofumn will be used interchangeably with the term
compression member, for brevity and in conformity with general usage.
Three types of reinforced concrete compression members are in use;

1. Members reinforced with longitudinal bars and lateral ties.

2, Members reinforced with longitudinal bars and continuous spirals.

3. Composite compression members reinforced longitudinally with structural steel
shapes. pipe. or tubing, with or without additional longitudinal bars, and various
types of lateral reinforcement.

Types 1 and 2 are by far the most commeoen, and most of the discussion of this
chapter will refer to them.

The main reinforcement in columns is longitudinal, parallel to the direction of
the load, and consists of bars arranged in a square, rectangular, or circular pattern, as
was shown in Fig. 1.15. Figure 8.1 shows an ironworker tightening splices for the
main reinforcing steel during construction of the 60-story Bank of America Corporate
Center in Charlotte, North Carolina. The ratio of longitudinal steel area A to gross
concrete cross section A, is in the range from 0.01 10 0.08, according to ACI Code
10.9.1. The lower limit is necessary to ensure resistance to bending moments not
accounted for in the analysis and to reduce the effects of creep and shrinkage of the
concrete under sustained compression. Ratios higher than 0,08 not only are uneco-
nomical, but also would cause difficulty owing to congestion of the reinforcement,
particularly where the steel must be spliced. Most columns are designed with ratios
below 0.04. Larger-diameter bars are used to reduce placement costs and to avoid
unnecessary congestion. The special large-diameter No. 14 and No. 18 {No. 43 and
No. 57) bars are produced mainly for use in columns, According to ACH Code 10.9.2,
a minimum of four longitudinal bars is required when the bars are enclosed by spaced
rectangular or circular ties, and a minimum of six bars must be used when the longi-
tudinal bars are enclosed by a continuous spiral.
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FIGURE 8.1
Reinforcement for primary
column of 6l-story Bank of
America Corporate Center in
Charlotte, Morth Carodina.
(Coertesy of Walter B Moore
il Axseciates.)

Columns may be divided into two broad categories: short columns, for which the
strength is governed by the strength of the materials and the geometry of the cross sec-
tion, and slender colwmns, for which the strength may be significantly reduced by lat-
eral deflections. A number of years ago, an ACI-ASCE survey indicated that 90 per-
cent of columns braced against sidesway and 40 percent of unbraced columns could
be designed as short columns, Effective lateral bracing, which prevents relative lateral
movement of the two ends of a column, is commonly provided by shear walls, eleva-
tor and stairwell shafts, diagonal bracing, or a combination of these. Although slender
columns are more common now because of the wider use of high-strength materials
and improved methods of dimensioning members, it is still true that most columns in
ordinary practice can be considered short columns. Only short columns will be dis-
cussed in this chapter: the effects of slenderness in reducing column strength will be
covered in Chapter 9.

The behavior of short, axially loaded compression members was discussed in
Section 1.9 in introducing the basic aspects of reinforced concrete. It is suggested that
the earlier material be reviewed at this point. In Section 1.9, it was demonstrated that,
for lower loads for which both materials remain elastic, the steel carries a relatively
small portion of the total load. The steel stress f, is equal to # times the concrete stress:

1= nf. (8.1)
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where n = [ E.is the modular ratio. In this range the axial load P is given by
P= A, 4+ (n — DA, (5.2}

where the werm in brackets is the arca of the transformed section {see Fig, 1.17).
Equations (8.2} and (8.1) can be used 1o find concrete and steel stresses respectively,
for given loads, provided both materials remain clastic, Example 1.1 demonstrated
the use of these equations.

In Section 1.9, it was further shown that the nominal strength of an axially
loaded column can be found, recognizing the nonlinear response of both materials, by

P, = 08574, + A,f, (8.3q)
or
P, = 0.85f A, ~ A, + Af, (8.3h)

iL.e.. by summing the strength contributions of the two components of the column, At
this stage, the steel carries a significantly larger fraction of the load than was the case
at lower total load.

The calculation of the nominal strength of an axially loaded column was demon-
strated in Section 1.9,

According o ACI Code 100.3.6, the design strength of an axially Toaded column
is to be found based on Eq. (8.38) with the introduction of certain strength reduction
factors. The ACI factors are lower for columns than for beams. reflecting their greater
importance in a strocture. A beam failure would normally affect only a local region,
whereas a column failure could result in the collapse of the entire structure, In addi-
tion, these factors reflect differences in the behavior of tied columns and spirally rein-
forced columns that will be discussed in Section 8.2, A basic - factor of 0,70 is used
for spirally reinforced columns, and .65 for tied columns, vs, - = 0,90 for most
beams,

A further limitation on column strength is imposed by ACI Code 10.3.6 1o allow
for accidental eccentricities of loading not considered in the analysis. This is done by
imposing an upper limit on the axial load thar is less than the calculated design
strength. This upper limit is taken as (L85 times the design strength for spirally rein-
forced columns, and 0.80 times the calculated strength for tied columns. Thus, accord-
ing to ACI Code 10.3.6, for spirally reinforced columns

' Pr.l-.uu.'.r- = (L85 ng'fr 'Ag - A.l.':' +.Jfll1;A.fr' {84{‘}
with - = (0L70. For tied columns
P = 080 0B5f A - A+ A i(8.4h)

with - = (0.63.

LaTeRAL TIES AND SPIRALS

Figure 1.15 shows cross sections of the simplest types of columns, spirally reinforced
or provided with lateral ties. Other cross sections frequently found in buildings and
bridges are shown in Fig. 8.2, In general, in members with large axial forces and small
moments, longitudinal bars are spaced more or less uniformly around the perimeter
(Fig. 8.2a to d). When bending moments are large. much of the longitudinal steel is



Milson-Darwin-Dolan:
Design of Concrete
Structures, Thirteenth
Edition

B Short Columns Text

254 DESIGN OF CONCRETE STRUCTURES  Chapter 8

FIGURE 8.2
Tie arrangements for square
and rectangular columns,
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concentrated at the faces of highest compression or tension, ie., at maximum dis-
tantees from the axis of bending (Fig. 8.2¢ to f). Specific recommended patterns for
many combinations and arrangements of bars are found in Refs, 8.1 and 8.2. In heav-
ily loaded columns with large steel percentages. the result of a large number of bars,
gach of them positioned and held individually by ties, is steel congestion in the forms
and difficulties in placing the concrete. In such cases, bundled bars are frequently
employed. Bundles consist of three or four bars tied in direct contact, wired, or other-
wise fastened together. These are usually placed in the corners. Tests have shown that
adequately bundled bars act as one unit: i.e., they are detailed as if a bundle consti-
tuted a single round bar of area equal to the sum of the bundled bars.

Lateral reinforcement, in the form of individual relatively widely spaced ties or
a continuous closely spaced spiral, serves several functions. For one, such reinforce-
ment is needed to hold the longitudinal bars in position in the forms while the concrete
is being placed. For this purpose, longitudinal and transverse steel is wired together
to form cages, which are then moved into the forms and properly positioned before
placing the concrete. For another, transverse reinforcement is needed to prevent the
highly stressed, slender longitudinal bars from buckling outward by bursting the thin
concrete cover.

Closely spaced spirals serve these two functions. Ties. which can be arranged
and spaced in various ways, must be so designed that these two requirements are met.
This means that the spacing must be sufficiently small to prevent buckling between
ties and that, in any tie plane, a sufficient number of ties must be provided to position
and hold all bars. On the other hand. in columns with many longitudinal bars, if the
column section is crisscrossed by too many ties, they interfere with the placement of
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concrete in the forms. To achieve adequate tying yet hold the number of ties to a min-
imum, ACI Code 7.10.5 gives the following rules for tie arrangement:

All bars of tied columns shall be enclosed by lareral ties, at least No, 3 (No. 10) in size
for longitudinal bars up to No. 10 (No. 32}, and at least No. 4 (No, 13} in size for Nos,
11, 14, and 18 (Nos. 36, 43, and 57) and bundled longitudinal bars. The spacing of the
ties shall not exceed 16 diameters of longitudinal bars, 48 diameters of tie bars, nor the
least dimension of the column, The ties shall be so aranged that every comer and alter-
nate longitudinal bar shall have lateral support provided by the comer of a tie having an
included angle of not more than 1357, and no bar shall be farther than 6 in. clear on either
side from such a laterally supported bar. Deformed wire or welded wire fabric of equiv-
alent area may be used instead of ties. Where the bars are located around the periphery
of a circle, complete circular ties may be used.

For spirally reinforced columns ACI Code 7.10.4 requirements for lateral reinforce-
ment may be summarized as follows:

Spirals shall consist of a continuous bar or wire not less than £ in. in diameter, and the
clear spacing between turns of the spiral muost not exceed 3 in. nor be less than 1 in,

In addition. a minimum ratio of spiral steel is imposed such that the structural per-
formance of the column is significantly improved. with respect to both ultimate load
and the type of failure, compared with an otherwise identical tied column.

The structural effect of a spiral is easily visualized by considering as a model a
steel drum filled with sand (Fig. 8.3). When a load is placed on the sand. a lateral pres-
sure is exerted by the sand on the drum, which causes hoop tension in the steel wall.
The load on the sand can be increased until the hoop tension becomes large enough to
burst the drum. The sand pile alone, if not confined in the drum, would have been able
to support hardly any load. A cylindrical conerete column, to be sure, does have a def-
inite strength without any lateral confinement. As it is being loaded, it shortens longi-
tudinally and expands laterally. depending on Poisson’s ratio. A closely spaced spiral
confining the column counteracts the expansion, as did the steel drum in the model.
This causes hoop tension in the spiral, while the carrying capacity of the confined con-
crete in the core is greatly increased. Failure occurs only when the spiral steel yields,
which greatly reduces its confining effect, or when it fractures.

A tied column fails at the load given by Eq. (8.3a or b). At this load the concrete
fails by crushing and shearing outward along inclined planes, and the longitudinal
steel by buckling outward between ties (Fig. 8.4). In a spirally reinforced column,
when the same load is reached. the longitudinal steel and the concrete within the core
are prevented from moving outward by the spiral. The concrete in the outer shell, how-
ever, not being so confined, does fail; i.e.. the outer shell spalls off when the load P,
is reached. It is at this stage that the confining action of the spiral has a significant
effect, and if sizable spiral steel is provided. the load that will ultimately fail the col-
umn by causing the spiral steel to yield or fracture can be much larger than that at
which the shell spalled off. Furthermore, the axial strain limit when the column fails
will be much greater than otherwise: the toughness of the column has been much
increased.

In contrast to the practice in some foreign countries, it is reasoned in the United
States that any excess capacity beyond the spalling load of the shell is wasted because
the member, although not actually failed, would no longer be considered serviceable.
For this reason, the ACI Code provides a minimum spiral reinforcement of such an
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amount that its contribution to the carrying capacity is just slightly larger than that of
the concrete in the shell. The situation is best understood from Fig. 8.5, which com-
pares the performance of a tied column with that of a spiral column whose spalling

load is equal to the ultimate load of the tied column. The failure of the tied column is
abrupt and complete. This is true, to almost the same degree, of a spiral column with
a spiral so light that its strength contribution is considerably less than the strength lost
in the spalled shell. With a heavy spiral the reverse is true, and with considerable prior
deformation the spalled column would fail at a higher load. The “ACI spiral,” its
strength contribution about compensating for that lost in the spalled shell. hardly
increases the ultimate load. However, by preventing instantaneous crushing of con-
crete and buckling of steel, it produces a more gradual and ductile failure, ie., a
tougher column.

It has been found experimentally (Refs. 8.3 to 8.5) that the increase in compres-
sive strength of the core concrete in a column provided through the confining effect of
spiral steel is closely represented by the equation

fF - 0855 =406 (e}

where f* = compressive strength of spirally confined core concrete
_____ 0.85 f! = compressive strength of concrete if unconfined
3 = lateral confinement stress in core concrete produced by spiral

The confinement stress f7 is calculated assuming that the spiral steel reaches its yield
stress f, when the column eventually fails. With reference to Fig. 8.6, a hoop tension
aﬂalysi's of an idealized model of a short segment of column confined by one turmn of
lateral steel shows that

24,0

= b
fr=s (h)
where A = cross-sectional area of spiral wire

. = vield strength of spiral steel
outside diameter of spiral
spacing or pitch of spiral wire

=
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A volumetric ratio is defined as the ratio of the volume of spiral steel to the volume of
core concrete:

2 dA, 4
T s
from which
s
Ay == (¢}

Substituting the value of A, from Eq. (¢) into Eq. (b) results in

p=2 @)

To find the right amount of spiral steel one calculates
Strength contribution of the shell = 0.85f] (A, — A (e}

where A, and A, are, respectively, the gross and core concrete areas, Then substituting
the confinement stress from Eq. {d) into Eq. (o) and multiplying by the core concrete
area,

Strength provided by the spiral = 2- fA, i

The basis for the design of the spiral is that the strength gain provided by the spiral
should be at least equal to that lost when the shell spalls, so combining Egs. (¢) and

(.
D.Sﬁj:{ﬂﬂ —AJ=1 .J;.-“’lc
from which

A
'*'20‘425',4_#”1'% (g}

According to the ACI Code, this result is rounded upward slightly, and ACI Code
10.9.3 states that the ratio of spiral reinforcement shall not be less than

A :
=045 2 - L

It is further stipulated in the ACI Code that f, must not be taken greater than 60,000
psi.

(8.3)

It follows [rom this development that two concentrically loaded columns
designed to the ACI Code, one tied and one with spiral but otherwise identical, will
fail at about the same load, the former in a sudden and brittle manner, the latter grad-
vally with prior spalling of the shell and with more ductile behavior. This advantage
of the spiral column is much less pronounced if the load is applied with significant
eccentricity or when bending from other sources is present simultaneously with axial
load. For this reason, while the ACI Code permits somewhat larger design loads on
spiral than on tied columns when the moments are small or zero (- = (0L.70 for spirally
reinforced columns vs, - = (.63 for tied), the difference is not large, and it is even
further reduced for large eccentricities, for which - approaches 0090 for both,
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FIGURE 8.7
Equivalent eccemtricity of
column load.

The design of spiral reinforcement according to the ACl Code provisions is eas-
ily reduced to tabular form, as in Table A 14 of Appendix A.

CompressioN PLus BENDING OF RECTANGULAR COLUMNS

Members that are axially, ie. concentrically, compressed occur rarely, if ever. in
buildings and other structures. Components such as columns and arches chiefly carry
loads in compression, but simultaneous bending is almost always present. Bending
moments are caused by continuity, i.e., by the fact that building columns are parts of
monolithic frames in which the support moments of the girders are partly resisted by
the abutting columns, by transverse loads such as wind forces, by loads carried eccen-
trically on column brackets, or in arches when the arch axis does not coincide with the
pressure line. Even when design calculations show a member to be loaded purely axi-
ally, inevitable imperfections of construction will introduce eccentricities and conse-
quent bending in the member as built. For this reason members that must be designed
for simultaneous compression and bending are very frequent in almost all types of
concrete structures.

When a member is subjected to combined axial compression P and moment M,
such as in Fig. 8.7a, it is usually convenient to replace the axial load and moment with
an equal load P applied at eccentricity ¢ = M P, as in Fig. 8.7h. The two loadings are
statically equivalent. All columns may then be classified in terms of the equivalent
eccentricity. Those having relatively small ¢ are generally characterized by compres-
sion over the entire concrete section, and if overloaded will fail by crushing of the con-
crete accompanied by vielding of the steel in compression on the more heavily loaded
side. Columns with large eccentricity are subject to tension over at least a part of the
section, and if overloaded may fail due to tensile yielding of the steel on the side far-
thest from the load.

For columns. load stages below the ultimate are generally not important. Crack-
ing of concrete, even for columns with large eccentricity, is usually not a serious prob-
lem, and lateral deflections at service load levels are seldom, if ever, a factor. Design
of columns is therefore based on the factored load, which must not exceed the design
strength, as usual, Le.,

M =M (8.6a)
P=P (8.60)

s—

. .

F—
—_——

(a) (b}
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STRAIN COMPATIBILITY ANALYSIS AND INTERACTION DIAGRAMS

Figure 8.8a shows a member loaded parallel to its axis by a compressive force P, at
an cccentricity ¢ measured from the centerline. The distribution of strains at a section
a-a along its length, at incipient failure, is shown in Fig. 8.8b. With plane sections
assumed to remain plane, concrete strains vary linearly with distance from the neuiral
axis, which is located a distance ¢ from the more heavily loaded side of the member.
With full compatibility of deformations, the steel strains at any location are the same
as the strains in the adjacent concrete; thus, if the ultimate concrete strain is -, the
strain in the bars nearest the load is -, while that in the tension bars at the far side is
- - Compression steel with area A, and tension steel with area A, are located at dis-
tances d' and d, respectively, from the compression face,

The corresponding stresses and forces are shown in Fig. 8.8¢. Just as for simple
bending. the actual concrete compressive stress distribution is replaced by an equiva-
lent rectangular distribution having depth ¢ = - ;. A large number of tests on columns
with a variety of shapes has shown that the strengths computed on this basis are in sat-
isfactory agreement with test results (Ref, 8.6),

Equilibrium between external and internal axial forces shown in Fig., 8.8c¢
requires that

P, = 085f.ab + Aify — Af, (8.7)

Also, the moment about the centerling of the section of the internal stresses and forces
must be equal and opposite to the moment of the external force P, so that

"

i a fr h

M, =1e = (085 ab — — 5 + A1 5 doo +Afod—- 3 (8.8)
FIGURE 8.8 [
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FIGURE 8.9

[nteraction diagram for
nominal column strength in
combined bending and axial
load.

These are the two basic equilibrium relations for rectangular eccentrically compressed
members.

The fact that the presence of the compression reinforcement 4, has displaced a
corresponding amount of concrete of area A, is neglected in writing these equations.
If necessary, particularly for large reinforcement ratios, one can account for this very
simply. Evidently, in the above equations a nonexistent concrete compression force of
amount A, -0.85f; - has been included as acting in the displaced concrete at the level
of the compression steel. This excess force can be removed in both equations by mul-
tiplving A, by f; — 0.85f; rather than by f..

For large eccentricities, failure is initiated by vielding of the tension steel A
Hence, for this case, f, = f.. When the concrete reaches its ultimate strain -, the com-
pression steel may or may not have yielded: this must be determined based on com-
patibility of strains. For small eccentricities the concrete will reach its limit strain -,
before the tension steel starts vielding; in fact. the bars on the side of the column far-
ther from the load may be in compression, not tension. For small eccentricities. too,
the analysis must be based on compatibility of strains between the steel and the adja-
cent concrete.

For a given eccentricity determined from the frame analysis (e, e = M P it
is possible to solve Egs. (8.7) and (8.8) for the load P, and moment M, that would
result in failure as follows. In both equations, f,. f. and a can be expressed in terms
of a single unknown ¢, the distance to the neutral axis. This is easily done based on
the geometry of the strain diagram, with -, taken equal to 0.003 as usual, and using
the stress-strain curve of the reinforcement. The result is that the two equations con-
tain only two unknowns, P, and ¢, and can be solved for those values simultaneously.
However, to do so in practice would be complicated algebraically, particularly because
of the need to incorporate the limit £, on both f, and f.

A better approach, providing the basis for practical design, is to construct a
strength interaction diaggram defining the failure load and failure moment for a given
column for the full range of eccentricities from zero to infinity, For any eccentricity,
there is a unigque pair of values of P, and M, that will produce the state of incipient
failure. That pair of values can be plotted as a point on a graph relating P, and M,
such as shown in Fig. 8.9, A series of such calculations, each corresponding to a dif-

Compression failure range

Radial lines show constant @ = ==

RE
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ferent eccentricity. will result in a curve having a shape typically as shown in Fig. 8.9.
On such a diagram, any radial line represents a particular eccentricity ¢ = M- P, For
that eccentricity, gradually increasing the load will define a load path as shown, and
when that load path reaches the limit curve, failure will result. Note that the vertical
axis corresponds to ¢ = 0, and P, is the capacity of the column if concentrically
loaded. as given by Eq. (8.36). The horizontal axis corresponds to an infinite value of
e. i.e., pure bending at moment capacity M. Small eccentricities will produce failure
governed by concrete compression, while large eccentricities give a failure triggered
by yielding of the tension steel.

For a given column, selected for trial, the interaction diagram is most easily con-
structed by selecting successive choices of neutral axis distance ¢, from infinity (axial
load with eccentricity 0) to a very small value found by trial to give P, = 0 (pure bend-
ing). For each selected value of ¢, the steel strains and stresses and the concrete force
are easily caleulated as follows. For the tension steel,

d = ¢
T T (8.9}
d—c
.fs = auE.: ¢ - Efx {S;'D}
while for the compression steel,
e —d-
v T T w ¢ EE-j ”‘
e = )
1= JE . =1 (8.12)
The concrete stress block has depth
= c=h (8.13)

and consequently the concrete compressive resultant is
C = 0.85f ab i(5.14)

The nominal axial force P, and nominal moment M, corresponding to the selected
neutral axis location can then be calculated from Eqs. (8.7} and (8.8}, respectively, and
thus a single point on the strength interaction diagram is established. The calculations
are then repeated for successive choices of neutral axis to establish the curve defining
the strength limits, such as Fig. 8.9, The calculations, of a repetitive nature, are easily
programmed for the computer or performed using a spreadsheet.

BaLancCeD FAILURE

As already noted, the interaction curve is divided into a compression failure range and
a tension failure range.” It is useful to define what is termed a balanced failure mode
and corresponding eccentricity ¢, with the load Py, and moment M, acting in combi-
nation to produce failure. with the concrete reaching its limit strain -, at precisely the

P The terms compression failure range and tension failire range are used for the purpose of general description and are distinet froan rension-
controfled and compression-controlled faileres, as descabed in Chapter 3 and Section 8.9,
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EXAMPLE 8.1

same instant that the tensile steel on the far side of the column reaches yield strain.
This point on the interaction diagram is the dividing point between compression fail-
ure (small eccentricities) and tension failure (large eccentricities).

The values of P, and M, are easily computed with reference to Fig. 8.8, For bal-
anced failure,

c=¢,=d ﬁ (8.15)
and
a =y = 4l {3,;6}

Equations (8.9) through (8.14) are then used to obtain the steel stresses and the com-
pressive resultant, after which £, and M), are found from Egs. (8.7) and (8.8).

It is to be noted that, in contrast to beam design, one cannot restrict column
designs such that yvielding failure rather than crushing failure would always be the result
of overloading. The type of failure for a column depends on the value of eccentricity e,
which in turn is defined by the load analysis of the building or other structure.

It is important to observe, in Fig. 8.9, that in the region of compression failure
the larger the axial load P, the smaller the moment M, that the section is able to sus-
tain before failing. However, in the region of tension failure the reverse is true; the
larger the axial load., the larger the simultaneous moment capacity. This is easily
understood. In the compression failure region. failure oceurs through overstraining of
the concrete. The larger the concrete compressive strain caused by the axial load alone,
the smaller the margin of additional strain available for the added compression caused
by bending. On the other hand. in the tension failure region, yielding of the steel ini-
tiates Failure. If the member is loaded in simple bending to the point at which yielding
begins in the tension steel, and if an axial compression load is then added, the steel
compressive stresses caused by this load will superimpose on the previous tensile
stresses, This reduces the total steel stress to a value below its yield strength,
Consequently, an additional moment can now be sustained of such magnitude that the
combination of the steel stress from the axial load and the increased moment again
reaches the yield strength.

The typical shape of a column interaction diagram shown in Fig. 8.9 has impor-
tant design implications. In the range of tension failure, a reduction in axial load may
produce failure for a given moment. In carrving out a frame analysis, the designer
must consider all combinations of loading that may occur, including that which would
produce minimum axial load paired with a given moment (the specific load combina-
tions are specified in ACI Code 8.8 and described in Section 12.3). Only that amount
of compression that is certain to be present should be used in calculating the capacity
of a column subject to a given moment.

Column strength interaction diagram. A 12 = 20 in. column is reinforced with four No.
0 (No. 29) bars of area 1.0 in® each. one in each corner as shown in Fig, 8. 10a. The concrete
cylinder strength is £ = 4000 psi and the steel yield strength is 60 ksi. Determine (a) the
load P,, moment M,. and corresponding eccentricity ¢, for balanced failure: (h) the load and
moment for a representative point in the tension failure region of the interaction corve;
(¢} the load and moment for a representative point in the compression failare region; {d) the
axial load strength for zero eccentricity. Then () sketch the strength interaction diagram for
this column. Finally, ( £} design the transverse reinforcement, based on ACI Code provisions.
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Column interaction diagram for Example 8.1 {a) cross section: (b} strain distribution: (¢} stresses

and forees: () strength interaction diagran,

SOLUTION.
{g) The nentral axis for the balanced failure condition is easily foound from Eg. (8.15) with
, = 0003 and - = 6029000 = 0.0021:
0.003
= |75 = = 0.3 in.
0.0051

giving a stress-block depth o = (L85 x 10.3 = 8,76 in. For the balanced failure condi-
tion, by definition, §, = f.. The compressive steel stress is found from Eq. (8.12):
_ 0.3 — 2.5 . ;
foo=0.003 x 29,000 T = (59ksi but = 60ksi
confirming that the compression steel, too, is at the vield. The concrete compressive
resultant is
=085 x4 x 8.76 = 12 = 357 kips

The balanced load F; is then found from Eq. (8.7) to be

P, = 357 + 2.0 % 60 — 2.0 = 60 = 357 kips
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and the balanced moment from Egq. (8.8) is
M, = 35710 — 438 + 2.0 > 60-10 = 25 + 2.0 % 6D-17.5 = 10-
= 1806 in-kips = 317 fr-kips

The corresponding eccentricity of load is ¢, = 10.66 in.
Any choice of ¢ smaller than ¢, = 10.3 in. will give a point in the tension failure region
of the interaction curve, with eccentricity larger than ¢,. For example, choose ¢ = 5.0
in. By definition, f, = f,. The compressive steel stress is found to be
30— 325 .

fi= 0.003 x 29,000 ~ 50 43.5ksi
With the stress-block depth a = 0.85 % 5.0 = 4.25, the compressive resultant is © =
(.85 > 4 = 4.25 x 12 = 173 kips. Then from Eq. (8.7), the thrust is

P,o=173 + 2.0 X 435 — 2.0 x 60 = 140 kips
and the moment capacity from Eq. (8.8} is
M, = 17310 — 212- + 20 % 43510 — 2.5 + 20 = 60-175 — 10
= 2916 in-kips = 242 fi-kips

giving eccentricity ¢ = 2916- 140 = 20083 ., well above the balanced value.

Now selecting a ¢ value larger than ¢, to demonstrate a compression failure point on
the interaction corve, choose ¢ = 18,00, for which ¢ = 0,85 X 18.0 = 153 in, The
compressive concrete resultant is C = 085 » 4 x [5.3 = 2 = 624 kips. From Eqg.
(8. 10 the stress in the steel at the left side of the column is

175 — 18.0 ,

= 0,003 = 29.000
Note that the negative value of f, indicates correctly that A, is in compression if ¢ is
greater than d, as in the present case. The compressive steel stress is found from Hy,
(8.12) 10 he
180 - 2.5

o= 10003 > 29,000 T80 = T75ksi but = 6l ksi

Then the column capacity is
P,= 624 + 2.0 % 60+ 2.0 % 2 = 748 kips
M,=624.10 - 765 +20x60-10 - 25 - 20 %2175 - 10
= 2336 in-kips = 195 fi-kips
giving eccentricity ¢ = 2336- 748 = 312 in.

The axial strength of the column if concentrically loaded corresponds to ¢ = = and
¢ = (1. For this case,

Po= 085 x4 > 12 = 20+ 4.0 > 60 = 1056 kips

Note that, for this as well as the preceding calculations, subtraction of the concrete dis-
placed by the steel has been neglected. For comparison, if the deduction were made in
the last calculation:

FP,o=0385 x4 12 %20 — 4+ 40 x 60 = 1042 kips

The error in neglecting this deduction is only | percent in this case: the difference gen-
erally can be neglected, except perhaps for columns with reinforcement ratios close to
the maximum of § percent. In the case of design aids, however, such as those presented
in Refs. 8.2 and 8.7 and discussed in Section 8,10, the deduction is usually included for
all reinforcement ratios.
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(¢} From the calculations just completed, plus similar repetitive calculations that will not
be given here, the strength interaction curve of Fig. 8.104 is constructed. Note the char-
acteristic shape. described earlier. the location of the balanced failure point as well as
the “small eccentricity” and “large eccentricity” points just found, and the axial load
capacity.

(') Inthe process of developing a strength interaction curve, it i= possible to select the val-
ues of steel strain -, as done in siep (a), for use in steps (b) and (2, Selecting -,
uniquely establishes the neutral axis depth ¢, as shown by Eqgs. (8.9) and (8.15}, and is
uselul in determining M, and P, for values of steel strain that correspond 1o changes in
the strength reduction factor - . as will be discussed in Section 8.9,

{g) The design of the column ties will be carried out following the ACH Code restrictions,
For the minimum permitted tie diameter of 7 in.. used with No. 9 (No. 29) longitudinal
bars having a diameter of 1,128 in a column the least dimension of which is 12 in., the
tie spacing is not to exceed:

3
48 X — = 18in.
2 in

16 > 1,128 = 18.05 in.
b= 12in

The last restriction controls in this case, and No. 3 (No. 10) ties will be used at 12 in,
spacing, detailed as shown in Fig. 8. 10q. Note that the permitted spacing as controlled
by the first and second criteria, 18 in., must be reduced because of the 12 in. column
dimension, indicating that a saving in tie steel could be realized using a smaller te
diameter; however, this would not meet the ACI Code restriction on the minimum tie
diameter in this case.

EXAMPLE 8.2

DisTRIBUTED REINFORCEMENT

When large bending moments are present, it is most economical to concentrate all or
most of the steel along the outer faces parallel to the axis of bending. Such arrange-
ments are shown in Fig. 8.2¢ to h. On the other hand, with small eccentricities so that
axial compression is predominant. and when a small cross section is desired, it is often
advantageous to place the steel more uniformly around the perimeter, as in Fig. 8.2q
to d. In this case, special attention must be paid to the intermediate bars, i.e., those that
are not placed along the two faces that are most highly stressed. This is so because
when the ultimate load is reached, the stresses in these intermediate bars are usually
below the yield point, even though the bars along one or both extreme faces may be
yielding. This situation can be analyzed by a simple and obvious extension of the pre-
vious analysis based on compatibility of strains, A strength interaction diagram may
be constructed just as before. A sequence of choices of neutral axis location results in
a set of paired values of P, and M,, each cormresponding to a particular eccentricity of
load.

Analysis of eccentrically loaded column with distributed reinforcement.  The column
in Fig. 8.11a is reinforced with ten No. 11 (No. 36) bars disiributed arcund the perimeter as
shown. Load £, will be applied with eccentricity ¢ about the strong axis. Material strengths
are f = 6000 psi and £, = 75 ksi. Find the load and moment corresponding to a failure point
with neutral axis ¢ = 18 in. from the right face.
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SoLuTioN.  When the concrete reaches its limit strain of 0.003, the strain distribution is
that shown in Fig. 8.11h, the strains at the locations of the four bar groups are found from
similar triangles, after which the stresses are found by multiplving strains by £, = 29,000 ksi
applying the limit value f

co = 000258 fu = 75.0 ksi compression
ca = 000142 fi = 41.2 ksi compression
g = QL0002 frv = 7.3 ksi compression
o = 0000401 fq = 26.4 ksi tension
For f = 6000 psi, - | = 0.75 and the depth of the equivalent rectangular stress block is a =
0.75 > 18 = 135 in. The concrete compressive resultant is C = 085 x 6 X 13353 % 12 =
226 kips, and the respective steel forces in Fig, 8.1 1 are:
C, = 4.68 x 75.00 = 351 kips
C,.= 312 %412 = 129 kips
Coa=312x73 = 23kips

T, =468 % 264 = 124 kips

Lad
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The axial load and moment that would produce failure for a neutral axis 18 in. from the right
face are found by the abvious extensions of Eqgs, (8.7) and (8.8):

P, = 826 + 351 + 120 + 23 — 124 = 1205 kips
M, = 82613 — 675 + 35113 — 2.5 + 120.13 — 0.5 — 2313 — 0.5.

+ 12413 — 2.5
= 10,520 in-kips
= 877 fi-kips

The corresponding eccentricity is e = 10,520- 1205 = 8.73 in, Other points on the interac-
tion diagram can be computed in a similar way.

Two general conclusions can be made from this example:

1. Even with the relatively small eccentricity of about one-third of the depth of the
section, only the bars of group | just barely reached their yield strain, and con-
sequently their yield stress. All other bar groups of the relatively high-strength
steel that was used are stressed far below their yield strength, which would also
have been true for group 1 for a slightly larger eccentricity. 1t follows that the use
of the more expensive high-strength steel 1s economical in symmetrically rein-
foreed columns only for very small eccentricities, e.g.. in the lower stories of tall
buildings.

2. The contribution of the intermediate bars of groups 2 and 3 to both P and M is
quite small because of their low stresses. Again, intermediate bars, except as they
are needed to hold ties in place, are economical only for columns with very small
eccentricities,

UnsYMMETRICAL REINFORCEMENT

Most reinforced concrete columns are symmetrically reinforced about the axis of
bending. However, for some cases, such as the columns of rigid portal frames in which
the moments are uniaxial and the eccentricity large, it is more economical to use an
unsymmetrical pattern of bars, with most of the bars on the tension side such as shown
in Fig. 8.12. Such columns can be analyzed by the same strain compatibility approach
as described above. However, for an unsymmetrically reinforced column to be loaded
concentrically, the load must pass through a point known as the plastic centroid. The
plastic centroid is defined as the point of application of the resultant force for the col-
umn cross section {including concrete and steel forces) if the column is compressed
uniformly to the failure strain -, = 0.003 over its entire cross section. Eccentricity of
the applied load must be measured with respect to the plastic centroid, because only
then will ¢ = 0 correspond to an axial load with no moment. The location of the plas-
tic centroid for the column of Fig. 8.12 is the resultant of the three internal forces to
be accounted for. Its distance from the left face is

0.85f:bh> 2 + A fd + A f.d-
C 0.85Lbh + Af, + AL,

(8.17)

Clearly, in a symmetrically reinforced cross section, the plastic centroid and the geo-
metric center coincide,
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FIGURE 8.12
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CircuLAar COLUMNS

It was mentioned in Section 8.2 that when load eccentricities are small, spirally rein-
forced columns show greater toughness, i.e., greater ductility, than tied columns,
although this difference fades out as the cccentricity is increased. For this reason, as
discussed in Section 8.2, the ACI Code provides a more favorable reduction factor - =
0.70 for spiral columns, compared with - = 0L65 for tied columns. Also, the maxi-
mum stipulated design load for entirely or nearly axially loaded members is larger for
spirally reinforced members than for comparable tied members (see Section 8.9), It
follows that spirally reinforeed columns permit a somewhat more economical utiliza-
tion of the marterials, particularly for small calculated eccentricities. A further advan-
tage lies in the fact that the circular shape is frequently desired by the architect.

Figure 8.13 shows the cross section of a spirally reinforced column, Six or more
longitudinal bars of equal size are provided for longitudinal reinforcement, depending
on column diameter, The strain distribution at the instant at which the ultimarte load is
reached is shown in Fig. 8,136, Bar groups 2 and 3 are seen to be strained to much
smaller values than groups 1 and 4. The stresses in the four bar groups are casily
found. For any of the bars with strains in excess of vield strain - | = f- [, the stress
at failure is evidently the yield stress of the bar, For bars with smaller strains, the stress
is found from f, = - E.

Omne then has the internal forces shown in Fig, 8.13¢. They must be in force and
moment equilibrium with the nominal serength P, It will be noted that the situation is
analogous to that discussed in Sections 8.4 1w 8.6 for rectangular columns,
Calculations can be carried out exactly as in Example 8.1, except that for circular
columns the concrete compression zone subject to the equivalent rectangular stress
distribution has the shape of a segment of a circle, shown shaded in Fig. 8.13a.

Although the shape of the compression zone and the strain variation in the dif-
ferent groups of bars make longhand calculations awkward, no new principles are
invelved and computer solutions are easily developed.



Milson-Darwin-Dolan: B Short Columns Text 5 Tha Mchraw—Hilt

Design of Concrete Campisnas, 2004
Structures, Thirteenth
Edition
SHORT COLUMNS 269
FIGURE 8.13

Circalar column with
compression plus bending.

(a)

()
€3 e —

Ey |

(c) 4= P
Rilics
I

Agafes Asales | Asoler Asifar P.

e e ]

Design or analysis of spirally reinforced columns is usually carried out by means
of design aids. such as Graphs A.13 to A.16 of Appendix A. Additional tables and
graphs are available, e.g., in Ref. 8.7. In developing such design aids, the entire steel
area is often assumed to be arranged in a uniform, concentric ring, rather than being
concentrated in the actual bar locations; this simplifies caleulations without noticeably
affecting results if the column contains at least eight longitudinal bars. When fewer
bars are used. the interaction curve should be caleulated based on the weakest orien-
tation in bending.

It should be noted that, to qualify for the more favorable safety provisions for
spiral columns, the reinforcement ratio of the spiral must be at least equal to that given
by Eq. (8.5} for reasons discussed in Section 8.2

ACI| Cope Provisions EOrR CoLumn DesIGN

For columns. as for all members designed according to the ACI Code. adequate safety
margins are established by applying load factors to the service loads and strength
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reduction factors to the nominal strengths. Thus, for columns, - P, = P, and
- M, = M, are the basic safety criteria. For most members subject to axial compression
or compression plus flexure (compression-controlled members. as described in
Chapter 33, the ACI Code provides basic reduction factors;

= (.65 for tied columns

= (.70 for spirally reinforced columns

The spread berween these two values reflects the added safety furnished by the greater
toughness of spirally reinforced columns,

There are various reasons why the - values for columns are lower than those for
flexure or shear (0,90 and (.75, respectively), One is that the strength of underrein-
forced flexural members is not much affected by variations in concrete strength, since
it depends primarily on the vield strength of the steel, while the strength of axially
loaded members depends strongly on the concrete compressive strength. Because the
cylinder strength of concrete under site conditions is less closely controlled than the
vield strength of mill-produced steel, a larger occasional strength deficiency must be
allowed for, This is particularly true for columns, in which concrete, being placed
from the top down in a long. narrow form, is more subject to segregation than in hor-
izontally cast beams. Moreover, electrical and other conduits are frequently focated in
building columns: this reduces their effective cross sections, often 0 an extent
unknown to the designer, even though this is poor practice and restricted by the ACI
Code. Finally, the consequences of a column failure. say in a tower story, would be
more catastrophic than that of a single beam in a floor system in the same building.

For high eccentricities, as the eccentricity increases from ¢, to infinity {pure
bending), the ACT Code recognizes that the member behaves progressively more like
a flexural member and less like a column, As described in Chapter 3, this is acknowl-
edged in ACI Code 9.3.2 by providing a linear transition in - from values of (.65 and
0.70 1o 0.90 as the net tensile strain in the extreme tensile steel - | increases from f- £,
(which may be taken as 0.002 for Grade 60 reinforcement) to 0,003, '

Al the other extreme, for columns with very small or zero calculated eccentrici-
ties, the ACT Code recognizes that accidental construction misalignments and other
unforeseen factors may produce actual eccentricities in excess of these small design
values, Also, the concrete strength under high, sustained axial loads may be somewhat
smaller than the short-term cylinder strength, Therefore, regardless of the magnitude
of the calculated eccentricity, ACT Code 1003.5 limits the maximum design strength o
0.80- P, for ted columns (with - = 0.65) and to (.85 F, for spirally reinforced
columns (with - = 0,700, where P, is the nominal strength of the axially loaded col-
umn with zero eccentricity [see Eq. (8.43].

The effects of the safety provisions of the ACI Code are shown in Fig. 8,14, The
solid curve labeled “nominal sirength™ is the same as Fig, 8.9 and represents the actual
cartying capacity, as nearly as can be predicied. The smooth curve shown partially
dashed, then solid. then dashed, represents the basic design strength obtained by
reducing the nominal strengths P, and M, for cach eccentricity, by - = (.65 for tied
columns and - = 0.70 for spiral columns, The horizontal cutoff at - - P, represents the
maximum design Ioad stipulated in the ACI Code for small eccentricities, i.e.. large
axial loads, as just discussed. At the other end, for large eccentricities, i.e.. small axial
loads, the ACT Code permits a linear transition of - from 0.65 or 0.70, applicable for
- = i By for 0.002 for Grade 60 reinforcement) to 0.90 at -, = 0.005. By definition,
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FIGURE 8.14 P
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- = f.- E, at the balanced condition. The effect of the transition in - is shown at the
lower right end of the design strength curve.”

DEesiGN AIDS

The design of eccentrically foaded columns using the strain compatibility method of
analysis described requires that a trial column be selected. The trial column is then
investigated to determine if it is adequate to carry any combination of £, and M, that
may act on it should the structure be overloaded, i.e., to see if P, and M, from the
analysis of the structure, when plotted on a strength interaction diagram such as Fig.
8.14, fall within the region bounded by the curve labeled “ACT design strength.”
Furthermore. economical design requires that the controlling combination of £, and
M, be close to the limit curve. If these conditions are not met, a new column must be
selected for trial.

While a simple computer program or spreadsheet can be developed, based on the
strain compatibility analysis, to calculate points on the design strength curve, and even
to plot the curve, for any trial column, in practice design aids are used such as are
available in handbooks and special volumes published by the American Concrete
Institute (Ref, 8.7) and the Concrete Reinforcing Steel Institute (Ref. 8.2). They cover
the most frequent practical cases, such as symmetrically reinforced rectangular and
square columns and circular spirally reinforced columns. There are also a number of
commercially available computer programs (c.g., PCACOLUMN, Portland Cement
Association, Skokie, inois, and HBCOLUMN, Concrete Reinforcing Steel Institute,
Schavmburg, inois).

T While the general intent of the ACE Code salety provisions refating 10 cocentric colwmns is clear and Tondamentally sound, the end resalt is a set of
strngely shaped column design corves following no discermible physical law, a5 is demonstraed in Fig, 814, Improved column safety provisions,
resalting in g smeoth desizn corve appropriately related o the strength corve, world be stmpler w use and more rational as well,
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EXAMPLE 8.3

Craphs A.S through A.16 of Appendix A are representative of column design
charts (such as found in Ref. 8.7), in this case for concrete with f) = 4000 psi and steel
with yield strength f, = 60 ksi, for varying cover distances.” Reference 8.7 includes
charts for a broad range of material strengths. Graphs A.5 through A8 are drawn for
rectangular columns with reinforcement distributed around the column perimeter;
Craphs A.9 through A.12 are for rectangular columns with reinforcement along two
opposite faces. Circular columns with bars in a circular pattern are shown in Graphs
A 13 through AL 16,

The graphs are seen to consist of nominal strength interaction curves of the type
shown in Fig. 8.14. However, instead of plotting P, versus M, corresponding param-
eters have been used to make the charts more generally applicable, i.e.. load is plotted
as K, = P (f/A,). while moment is expressed as R, = Pe (f Ah). Families of
curves are drawn for various values of - | = A, A, between (.01 and 0.08. The graphs
also include radial lines representing different eccentricity ratios e b, as well as lines
representing ditferent ratios of stress £, f, or values of strain -, = 0.002 and (L0035 in
the extreme tension steel. '

Charts such as these permit the direct design of eccentrically loaded columns
throughout the common range of strength and geometric variables. They may be used
in one of two ways as follows. For a given factored load P, and equivalent eccentric-
itye =M, P,

1. (a) Select trial cross section dimensions b and h (refer to Fig. 8.8).
(b) Calculate the ratio - based on required cover distances to the bar centroids,
and select the corresponding column design chart,
(e) Caleulate K, = P, (- ffA ) and R, = P e (- f/A ). where A, = bh.
{d) From the graph, for the values found in (¢), read the required reinforcement
ratio - .
(e) C'.ah:ulilke the total steel area A, = - bi.
2. (a) Select the reinforcement ratio - -
(h) Choose a trial value of /i and calculate ¢ h and - .
(¢) From the corresponding graph, read K, = P, ( f/A) and calculate the
required A,
(d) Calculate b = Ar-h.
{e) Revise the trial value of / if necessary to obtain a well-proportioned section,
(f) Calculate the total steel area 4,, = - L,bh.

Use of the column design charts will be illustrated in Examples 8.3 and 8.4.
Other design aids pertaining to ties and spirals, as well as recommendations for
standard practice, will be found in Refs. 8.2 and 8.7,

Selection of reinforcement for column of given size.  Tn a three-story structure, an exte-
rior column is 1o be designed for a service dead load of 222 kips, maximum live load of
333 kips, dead load moment of 162 fi-kips, and live load moment of 232 ft-kips. The mini-
mum live load compatible with the full live load moment is 166 kips, obtained when no live
load is placed on the roof but a full live load is placed on the second floor, Architectural con-
siderations require that a rectangular column be used, with dimensions & = 20 in. and # =
25 in.

"iGraphs A5 through AL LA wene developed for the specific bar configurations shown on the graphs, The curves exhibil changes in curvature,
expecially apparent near the balasced foad, that result when bars within the cross section yield. The valoes provided in the graphs, however, are
larpely insensitive o the exact number of bars in the cross secton and may be used for columns with similar bar configurations, but with smualfer

oF langer nuinbers of bars,
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(¢) Find the required column reinforcement for the condition that the full live load acts.

(h) Check to ensure that the column is adequate for the condition of no live load on the
roof.

Material strengths are f7 = 4000 psi and £, = 60,000 psi.

SOLUTION,
{a) The column will be designed initially for full load, then checked for adequacy when
live Joad is partially removed, According to the ACE safety provisions. the column musi
be designed for a factored load P, = 1.2 % 222 + 1.6 = 333 = 799 kips and a factored
moment M, = 1.2 X 162 + 1.6 % 232 = 566 fi-Kips. A column 20 X 25 in. is speci-
fied, and reinforcement distributed around the column perimeter will be used. Bar cover
is estimated to be 2.5 in. from the column face 10 the steel centerline Tor each bar. The
column parameters (assuming bending about the strong axis) are
P, 799
— — — . 5
K SfeA, 065 % 4 500 vl
P = M, 566 % 12
T fAS 065 X 4 % 500 X 25

= 0.20%

With 2.5 in. cover, the parameter - = (25 — 5)- 25 = 0,80, For this column geometry
and material strengths, Graph A7 of Appendix A applies. From that figure. with the
calculated values of K, and R, -, = 0.024. Thus, the required reinforcement is A, =
0.024 > 500 = [2.00 in*. Twelve No. 9 (No. 29) bars will be used, one at each corner
and two evenly spaced along each face of the column, providing A, = 12.00 in’.

(h) With the roof live load absent, the column will carry a factored load P, = 1.2 % 222 +
1.6 > 166 = 532 kips and factored moment M, = 566 fi-kips, as before. Thus, the col-
umn parameters for this condition are

P, 532
feA, D65 % 4 500

M, 366 % 12
LAJ D65 % 4 % 500 X 25

K, = = (.409

= .209

R, =

and - = {L.80 as before. From Graph A7 it is found that a reinforcement ratio of - =
0.016 is sufficient for this condition. less than that required in part (). s0 no modifi-
cation is required.

Selecting Mo. 3 (No. 10} ties for trial. the maximum tie spacing must not exceed
48 x 0375 = 18 in, 16 x 1128 = [8.05 in., or 20 in. Spacing is controlled by the
diameter of the ties, and No. 3 (No. 10) ties will be used at 18 in. spacing. in the pat-
tern shown in Fig. 8.2d.

EXAMPLE 8.4

Selection of column size for a given reinforcement ratio. A column is (o be designed o
carry a factored load £, = 481 kips and factored moment M, = 492 fi-kips. Material
strengths £, = 60,000 psi and f = 4000 psi are specified. Cost studies for the particular
location indicate that a reinforcement ratio -, of about (L03 is optimuwm, Find the required
dimensions b and & of the column. Bending will be about the strong axis, and an arrange-
ment of steel with bars concentrated in two layers, adjacent to the outer faces of the column
and parallel 1o the axis of bending, will be used.

Sovvrion. It is convenient to select a trial column dimension &, perpendicular to the axis
of bending: a value of it = 25 in. will be selected, and assuming a concrete cover of 2.5 in.
to the bar centers, the parameter - = (.80, Graph A 11 of Appendix A applies. For the stated
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loads the eccentricity &5 ¢ = 492 > 122481 = 123 in, and ¢ & = 12.3-25 = 0.49. From
Graph A.11 with e = 049 and -, = 0,03, K, = P flA, = 0.51. For the trial dimension
io= 25 in., the required column width is
LT 481

SR 063 x4 X051 X 25

b = 145 in.

A column 15 * 25 in. will be used, for which the required steel area is A, = 0.03 X |5 ®
25 = 11.25 in”. Bight No. 11 (No. 36) bars will be used. providing A, = 12.48 in®, arranged
in two layers of four bars each, similar to the sketch shown in Graph A.11.

BiaxiaL BENDING

The methods discussed in the preceding sections permit rectangular or square columns
to be designed if bending is present about only one of the principal axes. There are sit-
uations, by no means exceptional, in which axial compression is accompanied by
simultaneous bending about both principal axes of the section. Such is the case. for
instance, in corner columns of buildings where beams and girders frame into the col-
umns in the directions of both walls and transfer their end moments into the columns
in two perpendicular planes. Similar loading may ocecur at interior columns, particu-
larly if the column layout is irregular.

The situation with respect to strength of biaxially loaded columns is shown in
Fig. 8.15. Let X and ¥ denote the directions of the principal axes of the cross section.

FIGURE 8.15

Y
[nteraction diagram for T

compression plus biaxial
bending: (¢) uniaxial bending ;
about ¥ axis; (b} uniaxial Fy o & Fn
bending about X axis; P 1a J[ ]

(¢} biaxial bending about ' !

diagonal axis: {d) interaction Case (b) I[&I) }-7 914-{
surface.

Plane of ; Case (a) |
constant P, P
Load contour &
Lo il Y
Mnxﬁ T J' -— X
o 1 vl

Plane of
constant A

(d)
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In Fig. 8.15a, the section is shown subject to bending about the Y axis only, with load
eceentricity e, measured in the X direction. The corresponding strength interaction
curve is shown as Case (a) in the three-dimensional sketch in Fig. 8.154 and is drawn
in the plane defined by the axes P, and M. Such a curve can be established by the
usual methods for uniaxial bending. Similarly, Fig. 8.15h shows bending about the X
axis only, with eccentricity ¢, measured in the ¥ direction. The comresponding interac-
tion curve is shown as Case (b) in the plane of P, and M, in Fig. 8.154. For Case (¢),
which combines X and ¥ axis bending, the orientation of the resultant eccentricity is
defined by the angle - :

£ My
= arctan T = arctan ——
('_'r' B

Bending for this case is about an axis defined by the angle - with respect to the X axis.
The angle - in Fig. 8.15¢ establishes a plane in Fig. 8,154, passing through the verti-
cal P axis and making an angle - with the M, axis, as shown. In that plane, column
strength is defined by the interaction curve labeled Case (). For other values of -,
similar curves are obtained to define a failure surface for axial load plus biaxial bend-
ing, such as shown in Fig. 8.154. The surface is exactly analogous to the inferaction
curve for axial load plus uniaxial bending. Any combination of P, M. and M,
falling inside the surface can be applied safely. but any point falling outside the sur-
face would represent failure. Note that the failure surface can be described either by a
set of curves defined by radial planes passing through the P, axis, such as shown by
Case (). or by a set of curves defined by horizontal plane intersections, each for a con-
stant . defining load contours.

Constructing such an interaction surface for a given column would appear to be
an obvious extension of uniaxial bending analysis. In Fig. 8.15¢, for a selected value
of -, successive choices of neutral axis distance ¢ could be taken. For each, using strain
compatibility and stress-strain relations to establish bar forces and the concrete com-
pressive resultant, then using the equilibrium equations to find P,, M, . and M, one
can determine a single point on the interaction surface. Repetitive calculations, easily
done by computer, then establish sufficient points to define the surface. The triangu-
lar or trapezoidal compression zone. such as shown in Fig. 8.15¢, is a complication,
and in general the strain in each reinforcing bar will be different, but these features can
be incorporated.

The main difficulty, however, is that the neutral axis will not, in general, be per-
pendicular to the resultant eccentricity, drawn from the column center to the load P
For each successive choice of neutral axis, there are unique values of P, M. and M,
and only for special cases will the ratio of M- M be such that the eccentricity is per-
pendicular to the neutral axis chosen for the caleulation. The result is that, for succes-
sive choices of ¢ for any given -, the value of - in Fig. 8.15¢ and o will vary. Points on
the failure surface established in this way will wander up the failure surface for increas-
ing P . not representing a plane intersection, as shown for Case () in Fig. 8.154.

In practice. the factored load P, and the factored moments M, and M, to be
resisted are known from the frame analysis of the structure. Therefore, the actual value
of - = arctan(M,, M, ) is established, and one needs only the curve of Case (¢). Fig.
8.154. to test the adequacy of the trial column. An iterative computer method to estab-
lish the interaction line for the particular value of - that applies will be described in
Section 8.14.

Alternatively, simple approximate methods are widely used. These will be

described in Sections .12 and 813,
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FIGURE 8.16
Interaction contours at
constant P for varying - .
(Adapied from Ref 88}

Loap ConTourR METHOD

The load contour method is based on representing the failure surface of Fig. 8.154 by
a family of curves corresponding to constant values of P, (Ref, 8.8), The general form
of these curves can be approximated by a nondimensional interaction equation:

M, ! M, 2
W.,u 4 M,,_m' = 1.0 (8.18)
where
M, = Pe,
Myo = My, when M, = 0
My = Pey

Mo =M, when M, = 0

and - | and -, are exponents depending on column dimensions, amount and distribu-
tion of steel reinforcement, stress-strain characteristics of steel and concrete, amount
of concrete cover, and size of lateral ties or spiral. When - | = . , = -, the shapes of
such interaction contours are as shown in Fig. 8.16 for specific - values.
Calculations reported by Bresler in Ref, 8.9 indicate that - falls in the range
from 1.15 to 1.53 for square and rectangular columns. Values near the lower end of
that range are the more conservative. Methods and design aids permitting a more
defined estimation of - are found in Ref. 8.7,
In practice. the values of P, M, . and M

M v are known from the analysis of the

structure. For a trial column section, the values of M, and M, corresponding to the
load P, can easily be found by the usual methods for uniaxial bending. Then replac-
ing M, withM, - and M, withM . andusing -, =, = in Eq. (8.18). or alter-
natively by plotting (M, ) M

nxld

and (M,, - ) M,,,, in Fig. 8.16. it can be confirmed

0 | | | | s -
0 0.2 0.4 0.6 0.8 1.0
Mnx"') MJ?XU



Milson-Darwin-Dolan: B Short Columns Text 5 Tha Mchraw—Hilt

Design of Concrete Campisnas, 2004
Structures, Thirteenth
Edition
SHORT COLUMNS 277

that a particular combination of factored moments falls within the load contour {safe
design} or outside the contour (failure), and the design modified if necessary.

An approximate approach to the load contour method, in which the curved load
contour is represented by a bilinear approximation, will be found in Ref. 8.10. It leads
to a method of frial design in which the biaxial bending moments are represented by
an equivalent uniaxial bending moment. Design charts based on this approximate
approach will be found in the ACT Design Handbook (Ref. 8.7). Trial designs arrived
at in this way should be checked for adequacy by the load contour method, described
above, or by the method of reciprocal loads that follows.

ReciprocaL Loap METHOD

A simple, approximate design method developed by Bresler (Ref. 8.9) has been satis-
factorily verified by comparison with results of extensive tests and accurate calcula-
tions (Ref, 8.11). It is noted that the column interaction surface in Fig. 8.154 can, alter-
natively. be plotted as a function of the axial load P, and eccentricities ¢, = M- P,
and ¢, = M, P,. as is shown in Fig. 8.17a. The surface S, of Fig. 8.17a can be trans-
formed into an equivalent failure surface S,, as shown in Fig. 8.17h, where ¢, and ¢,
are plotted against 1- P, rather than P,. Thus, e, = ¢, = 0 corresponds to the inverse
of the capacity of the column if it were concentrically loaded. Py, and this is plotted
as point C. For ¢, = 0 and any given value of ¢,, there is a load P, (corresponding to
moment M,_,) that would result in failure. The reciprocal of this load is plotted as
point A. Similarly, for e, = 0 and any given value of e, there is a certain load P, (cor-
responding to moment M) that would cause failure, the reciprocal of which is point
B. The values of P, and P, are easily established, for known eccentricities of load-
ing applied to a given column, using the methods already established for uniaxial
bending, or using design charts for uniaxial bending.

FIGURE 8.17 1

Interaction surfaces for the = Fﬂ

reciprocal load method. ] 4
Approximating

Actual failure

plane surface S5
surface S5z

(a)

P, approx
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EXAMPLE 8.5

An obligue plane 5, is defined by the three points: A, B, and C. This plane is used
as an approximation of the actual failure surface 5. Note that, for any point on the sur-
face S, (i.e.. for any given combination of ¢, and e ). there is a corresponding plane 5.
Thus, the approximation of the true failure surface 5, involves an infinite number of
planes §; determined by particular pairs of values of e, and e, i.e., by particular points
A B, and C. _

The vertical ordinate 1. P, ., to the troe failure surface will always be conser-
vatively estimated by the distance 1P, . to the oblique plane ABC (extended).
because of the concave upward eggshell shape of the true failure surface. In other
words, 1P, . is always greater than |- P .. which means that P, . is always
less than P, .

Bresler's reciprocal load equation derives from the geometry of the approximat-

ing plane. It can be shown that
=—+— - — (8.19)

where P, = approximate value of nominal load in biaxial bending with eccentricities
e, and e,
P = nominal load when only eccentricity e_is present (e, = ()
P = nominal load when only eccentricity e, is present (¢, = ()
P, = nominal load for concentrically loaded column

Equation (8.19) has been found to be acceptably accurate for design purposes pro-
vided P, = 0.107,. It is not reliable where biaxial bending is prevalent and accompa-
nied by an axial force smaller than £ 10. In the case of such strongly prevalent bend-
ing, failure is initiated by yielding of the steel in tension, and the situation corresponds
to the lowest tenth of the interaction diagram of Fig. 8.154. In this range, it is conser-
vative and accurate enough to neglect the axial force entirely and to calculate the sec-
tion for biaxial bending only.

Over most of the range for which the Bresler method is applicable, above
0.10F,. - is constant, although for very small eccentricities the ACI Code imposes an
upper limit on the maximum design strength that has the effect of flattening the upper
part of the column strength interaction curve (see Section 8.9 and Graphs A 5 through
A.16 of Appendix A). When using the Bresler method for biaxial bending, it is neces-
sary to use the uniaxial strength curve withour the horizontal cutoff (as shown by the
lighter lines in the graphs of Appendix A) in obtaining values for use in Eq. (8.19). The
value of - P obtained in this way should then be subject to the restriction, as for uni-
axial bending, that it must not exceed 0.80- £, for tied columns and 0.85 P, for spi-
rally reinforced columns.

In a typical design situation, given the size and reinforcement of the trial column
and the load eccentricities ¢, and ¢,. one finds by computation or from design charts
the nominal loads P, , and P, for uniaxial bending around the X and ¥ axes respec-
tively, and the nominal load P, for concentric loading. Then 1 P, is computed from
Eq. (8.19) and. from that, P, is calculated. The design requirement is that the factored
load P, must not exceed - P, as modified by the horizontal cutoff mentioned above, if
applicable.

Design of column for biaxial bending, The 12 > 20 in. column shown in Fig. 8.18 is rein-
forced with eight No, 9 (No. 29) bars arranged around the column perimeter, providing an
area A, = 8.00in’, A factored load P, of 255 kips is to be applied with eccentricities ¢, =
3in and e, = 6 in.. as shown. Material strengths are f = 4 ksi and f, = 60 ksi. Check the



Milson-Darwin-Dolan:
Design of Concrete
Structures, Thirteenth
Edition

FIGURE 8.18
Column cross section for
Example 8.5,

2.5"

25— | 15" —‘

B Short Columns Text 5 Tha Mchraw—Hilt

Campaenas, 2004

SHORT COLUMNS 279

—2.5"

F |
iR %ﬁ—g‘x

120 70— —f—- 4
| le o e
275" s | 8No.9 (No.29) bars

N 20

adequacy of the trial design () using the reciprocal load method and (5} using the load con-

Lo

mithod.

SOLUTION,

(a)

()

By the reciprocal load method. first considering bending about the ¥ axis, - = 1520
= 0.75, and e-h = 620 = 0,30, With the reinforcement ratio of A, - b = 8.00-240 =
0.033, vsing the average of Graphs A6 (- =070 and A7 (- = 0.80)

P, (L62 + .66
w avg = ————— =064 Py = 064 X 4 X 240 = 614 kips
fr."x!y pFa
Py .
— = |.3] Py= 131 % 4 % 240 = 1258 kips
fr""‘g

Then for bending about the X axis, - = 712 = (.58 (say 0.60), and ¢ h = 312 =
0.25. Graph A5 of Appendix A pives

F, .
— = .65 Poo = 065 = 4 30 240 = 624 kips
fody

Py _ — yeso L
A 1.31 Py= 131 % 4 % 240 = 1258 kips
Sty

Substituting these values in Eg. (8.19) results in
1 I 1 I

P, 624 614 1258

from which P, = 410 kips. Thus, according to the Bresler method, the design load of
P, = 065 > 410 = 267 kips can be applied safely,

By the load contour method, for ¥ axis bending with P, (- f/A,) = 255 (0.65 x 4 < 240)
= (141, The average from Graphs A6 and A7 of Appendix A is

Mauﬂ ) _ 0,212 + ﬂ‘.23‘5
FoA I ave 2

= 0.00244

= (1.224

Hence. M, = 0.224 % 4 = 240 % 20 = 4300 in-kips. Then for X axis bending, with
PG fIA) = 0.41, as before, from Graph A5,

M

kil
— = {L186
FA R
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So M, = 0186 % 4 2 240 » 12 = 2140 in-kips. The factored load moments about

the ¥ and X axes respectively are
M, = 255 X 6 = 1530 in-kips
M, = 255 = 3 = 765 in-kips

Adequacy of the trial design will now be checked using Fq. (8.18) with an exponent -
conservatively taken equal to 1.15. Then with M, = M, and M, = M, - . that equa-
tion indicaes
763065 . 1530-0.65 115
2040 4300

This is close enough to 1.0 that the design would be considered safe by the load con-
tour method also,

= (L.502 + 0.500 = 1.002

In actual practice. the values of - used in Eq. (8.18) should be checked, for the
specific column, because predictions of that equation are quite sensitive to changes in
- In Ref. 8,10, it is shown that - = log 0.5 log - . where values of - can be tabulated
for specific column geometries, material strengths, and load ranges (see Ref. 8.7). For
the present example, it can be confirmed from Ref, 8.7 that - = 0.36 and hence - =
119, approximately as chosen,

One observes that, in Example 8.5, an eccentricity in the ¥ direction equal 1o
50 percent of that in the X direction causes a reduction in nominal capacity of 33 per-
cent, i.e., from 614 to 410 Kips. For cases in which the ratio of eccentricities is smaller,
there is some justification for the frequent practice in framed structures of neglecting
the bending moments in the direction of the smaller eccentricity, In general, biaxial
bending should be taken into aocount when the estimated eccentricity ratio approaches
or exceeds (L2,

CoMPUTER ANALYSIS FOR BiaxiaL BENDING OF COLUMNS

Although the Ioad contour method and the reciprocal load method are widely used in
practice, each has serious shortcomings., With the load contour method, selection of
the appropriate value of the exponent - is made difficult by a number of factors relat-
ing o column shape and bar distribution. For many cases, the usual assumption that
-y = -, 1s a poor approximation. Design aids are available, but they introduce further
approximations, ¢.g.. the use of a bilinear representation of the load contour, The
reciprocal load method is very simple to use, but the representation of the curved fail-
ure surface by an approximating plane is not reliable in the range of large eccentrici-
ties, where failure is initiated by steel yielding.

With the general availability of desktop computers, it is better 1o use simpler
methods to obtain faster, and more exact, solutions to the biaxial column problem.
Such a methed is that developed by Ehsani (Ref, 8,123 A column strength interaction
curve is established for a trial column, exactly analogous to the curve for axial load
plus uniaxial bending, as described in Sections 8.3 o 8.7, However, the curve is gen-
erated for the particular value of the eccentricity angle that applies, as determined by
the ratio of M- M, from the structural frame analysis [see Case (¢) of Fig, 8.154].
This is done by taking successive choices of neutral axis distance, measured in this
case along one face of the column from the most heavily compressed corner, from
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very small (large eccentricity) to very large (small eccentricity), then calculating the
axial force P, and moments M, and M. For each neutral axis distance, iteration is
performed with successive values of the orientation angle -, Fig. 8.15¢, until - = arc-
tan M, - M, is in agreement with the value of - = arctan M- M, from the structural
frame analysis. Thus, one point on the curve (¢) of Fig. 8.154 is established. The
sequence of caleulations is repeated: another choice of neutral axis distance is made,
a value of - 1s selected, the axial force and moments are calculated, - 1s found, and the
value of - is iterated until - is correct. Thus, the next point is established, and so on,
until the complete strength interaction curve for that particular value of - is complete.
ACI Code safety provisions may then be imposed in the usual way, and the adequacy
of the proposed design tested. for the known load and moments, against the design
strength curve for the trial column.

The method is obviously impractical for manual caleulation, but the iterative
steps are easily and quickly performed by desktop computers, which can also provide
a graphical presentation of results. Full details will be found in Ref. 8.12.

A number of computer programs for biaxial bending are available commercially,
such as PCACOLUMN (Portland Cement Association, Skokie, [Hinois) and HBCOL-

UMN (Concrete Reinforcing Steel Institute, Schaumburg, linois).

Bar SeLicing 1N COLUMNS

The main vertical reinforcement in columns is usually spliced just above each floor,
or sometimes at alternate floors, This permits the column steel area to be reduced pro-
gressively at the higher levels in a building, where loads are smaller, and in addition
avoids handling and supporting very long column bars. Column steel may be spliced
by lapping. by butt welding, by various types of mechanical connections, or by direct
end bearing, using special devices to ensure proper alignment of bars.

Special attention must be given to the problem of bar congestion at splices.
Lapping the bars, for example, effectively doubles the steel area in the column cross
section at the level of the splice and can result in problems placing concrete and
meeting the ACl Code requirement for minimum lateral spacing of bars (1.54, or
1.5 in.}. To aveid difficulty, column steel percentages are often limited in practice to
not more than about 4 percent. or the bars are extended two stories and staggered
splices are used.

The most common method of splicing column steel is the simple lapped bar
splice, with the bars in contact throughout the lapped length. It is standard practice to
offset the lower bars, as shown in Fig. 8.19, to permit the proper positioning of the
upper bars. To prevent outward buckling of the bars at the bottom bend point of such
an offset, with spalling of the concrete cover, it is necessary to provide special lateral
reinforcement in the form of extra ties. According to ACI Code 7.8.1, the slope of the
inclined part of an offset bar must not exceed 1 in 6, and lateral steel must be provided
to resist 15 times the horizontal component of the computed force in the inclined part
of the offset bar. This special reinforcement must be placed not more than 6 in. from
the point of bend, as shown in Fig. 8.19. Elsewhere in the column, above and below
the floor, the usual spacing requirements described in Section 8.2 apply, except that
ties must be located not more than one-half the normal spacing 5 above the floor,
Where beams frame from four directions into a joint, as shown in Fig. 8.19, ties may
be terminated not more than 3 in. below the lowest reinforcement in the shallowest of
such beams, according to ACI Code 7.10.5. If beams are not present on four sides,
such as for exterior columns, ties must be placed vertically at the usual spacing
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FIGURE 8.19
Splice details at rypical
interior colummn.
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through the depth of the joint to a level not more than one-half the usual spacing s
below the lowest reinforcement in the slab.

Analogous requirements are found in ACI Code 7.10.4 and are illustrared in Ref,
8.1 for spirally reinforced columns.

As discussed in Section 5,11, in frames subjected to lateral loading, a viable
alternative to splicing bars just above the floor is to splice them in the center half of
the column height, where the moment due to lateral loading is much lower than at
floor level. Sphicing near midheight is mandatory in “special moment frames™ designed
for seismic loading (Chapter 20} The use of midheight splices removes the require-
ment for the special ties shown in Fig. 8,19 becavse bent bars are not used.

Column splices are mainly compression splices, although load combinations
producing moderate to large eccentricity require that splices transmit tension as well,
ACI Code 12,17 permits splicing by lapping, butt welding, mechanical connectors, or
end bearing. As discussed in Section 5.11, the length of compression lap splices may
be reduced in cases where ties or spiral reinforcement throughout the lap length meet
specific requirements. If the column bars are in tension, Class A tension lap splices are
permitted if the tensile stress does not exceed 0.5/, and less than one-half of the bars
are spliced at any section. Class B tension splices are required if the tensile stresses
arce higher than 0.5/, under factored loads or where more than one-half of the rein-
forcement is spliced at one location. When end bearing splices are used, they must be
staggered or additional reinforcement must be added so that the continuing bars on
cach column face possess a tensile strength not less than 0,25/ times the area of the
vertical reinforcement on that face, '

Full requirements for both compression and tension lap splices are discussed in
Section 5.11, and the design of a compression splice in a typical column is illustrated
in Example 5.4.

B ACT Detailing Mannal, SP-66, American Concrele Institude, Farminglon Hills, M, 1994,

2.2 CRSN Pesign Handbook, Oth ed . Concrete Reinforcing Steel Insttute, Schawmburg, 11, 2002,

2.3 FOE. Richart, A, Brandeeses, and R L. Brown, A Stody of the Failore of Concrete ander Combined
Compressive Stresses,” Univ, 111 Eng, Exp. Sin, Bull, 185, 1928,



Milson-Darwin-Dolan: B Short Columns Text 5 Tha Mchraw—Hilt

Design of Concrete
Structures, Thirteenth
Edition

LN
8.5
B6,

BT
B

LN
B0

10

%12,

8.1

8.2.

FIGURE P8.3

Campaenas, 2004

SHORT COLUMNS 283

FoE, Richar, A, Brandiracg, and &, L. Brown, “The Failure of Plain and Spimlly Reinforced Concrene in
Compression,” Univ, L Eng, Exp, Sm, Bulbl, 190, 1929,

S Martmes., AL Ho Nilson, and F, O, Slate, “Spirally Reinfoeced High Strength Comerete Columns,” S,
ACT vol, B, no 5, 1984, pp, 43142,

A, H. Manock, 1, B, Kriv, and B, Hognestad, “Rectangular Concrete Stress Distribuiion in Ulrimage
Strength Design” L ACE vol. 32, no. 8, 1961, pp, BT5-92H,

ACT Degign Handbook, SP-17, American Concrere Instinue, Farmingion Hills, MI. 1997,

F, N Pannell, “Failwre Surfaces for Members in Compression and Biaxial Beading,” 0 ACE vl 60, no

1, 1963, pp. 129140,

B, Bresler, “Design Criteria for Reinforeed Columms amnder Asdal Logd sl Biaxial Bending.” £ ACH vol.
32, no, 5, 1960, pp. 481490,

AL Parme, J. M. Nieves, and A, Goewens, "Capacity of Reinforced Concrete Rectangubar Members
Subject w Biaxial Bending” 1 ACT vol, 63, no, 9, 1966, pp, 95 1-923,

L. M. Ramamurthy, “Tvestigaion of the Dlimate Strength of Sguare and Rectangular Columms under
Biaxially Eccentric Lowds,” in Svenp. Rednforced Conerete Codumns, SP-13, Amercan Conerete Instituie.
Dietrodl, M1, 1966, pp, 2632498,

ML B, Ehsani, “CADLY for Columms,” Castes, Tngl, vol, 8, no. 9, 1986, pp. 4347,

A 16 in. square column is reinforced with four No. 14 (No, 43) bars, one in
each corner, with cover distances 3 in. to the steel center in each direction,
Material strengths are | = 5000 psi and f, = 60,000 psi. Construct the inter-
action diagram relating axial strength P and flexural strength M,. Bending
will be about an axis parallel to one face. Calculate the coordinates for P, Py,
and at least three other representative points on the curve,

Plot the design strength curve relating - P, and - M, for the column of Problem
8.1, Design and detail the tie steel required by the ACI Code. Is the column a
good choice to resist a load P, = 540 kips applied with an eccentricity ¢ =
4.44 n?

The short column shown in Fig. PB.3 will be subjected to an eccentric load
causing uniaxial bending about the ¥ axis. Material strengths are f, = 60 ksi
and f, = 4 ksi.

‘r’

20" "

Ag = 6 No. 11 (No. 36)

s 4| ]

¢
+ 4|

- -—— 120 —*X

—d gk gk

ta) Construct the nominal strength interaction curve for this column, calcu-
lating no fewer than five points, including those corresponding o pure
bending, pure axial thrust, and balanced failure,

(&) Compare the calculated values with those obtained using Graph A.10 in
Appendix A.
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() Show on the same drawing the design strength curve obtained through
introduction of the ACI - factors.
(ef) Design the lateral reinforcement for the column. giving key dimensions
for ties.

8.4. The column shown in Fig. PE.4 is subjected to axial load and bending moment
causing bending about an axis parallel to that of the rows of bars. What
moment would cause the column to fail if the axial load applied simultane-
ously was 500 kips? Material strengths are £ = 4000 psi and f, = 60 ksi.

FIGURE P84 o

20" d

& &
T
& &
% e

ok e

Ag:8.0in? 8.0 in?

FIGURE P8.6

What is the strength M, of the column of Problem 8.4 if it were loaded in pure
bending (axial force = () about one principal axis?

Construct the interaction diagram relating P, to M, for the building column
shown in Fig. P8.6. Bending will be about the axis g-a. Calculate specific
coordinates for concentric loading (¢ = 0), for P, and at least three other
points, well chosen. on the curve. Material strengths are £ = 8000 psi and f, =
60,000 psi. '

& | 4

&
4 | 20"
&

4+
&
+
ko

+ | 4
3"——L— a”—-L— a*—-ls"-—

30" »

8.7

As = 10 No. 14 (No. 43)

A short rectangular reinforced conerete column shown in Fig. P8.7 is to be a
part of a long-span rigid frame and will be subjected to high bending moments
combined with relatively low axial loads, causing bending about the strong
axis. Because of the high eccentricity, steel is placed unsymmetrically as
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shown, with three No. 14 {(No. 43) bars near the tension face and two No. 11
(No. 36) bars near the compression face. Material strengths are ) = 6 ksi and
f. = 75 ksi. Construct the complete strength interaction diagram plotting P, vs.

M, relating eccentricities to the plastic centroid of the column (not the geo-
metric center).

dato plastic centroid .

+ +| i
+ 4 sl + 4
+ 4

— — , | —
T I L

" 2

3 No. 14 (No.43) 2 No. 11 (No. 36) — 10" —

FIGURE P8.7 FIGURE P8.8

8.8, The square column shown in Fig. PE.S must be designed for a factored axial
load of 130 kips. Material strengths are ! = 4000 psi and £, = 60,000 psi.
(@) Select the longitudinal and transverse reinforcement for an eccentricity e,
= 2.71in,
(b) Select the longitudinal and ransverse reinforcement Tor the same axial
load with ¢, = ¢, = 2.7 in.
(¢) Construct the strength interaction diagram and design strength curves for
the column designed in part (&), given that the column will be subjected o
baxial bending with equal eccentricities about both principal axes.
8.9, The square column shown in Fig. P8.9 is a corner column subject to axial load
and biaxial bending. Material strengths are f, = 60,000 psi and £, = 4000 psi.

FIGURE P8.9 Az = 4 No. 14 (No. 43}

Lo y +
eutral axis
ha—
+ 15"

DRI P

15"

N

{a) Find the unique combination of P, M. and M, that will produce incipi-
ent failure with the neutral axis located as in the figure. The compressive
zone 1s shown shaded. Note that the actual neutral axis is shown, not the
equivalent rectangular stress block limit; however, the rectangular stress
block may be used as the basis of calculations.

(h) Find the angle between the neutral axis and the eccentricity axis, the lat-

ter defined as the line from the column center to the point of load.
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8.10.

8.11.

For the axial load P, found in Problem 8.9, and for the same column, with the
same eccentricity ratio e, e,. find the values of M, and M, that would produce
incipient failure using the load contour method. Compare with the results of
Problem 8.9. Take - = 1.30), and use the graphs in Appendix A, as appropriate.
For the eccentricities ¢, and ¢, found in Problem 8.9, find the value of axial
load P, that would produce incipient failure using the reciprocal load (Bresler)
method. Use the graphs in Appendix A, as appropriate. Compare with the
results of Problems 8.9 and 8.10.



