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SLENDER COLUMNS

INTRODUCTION

The material presented in Chapter 8 pertained to concentrically or eccentrically loaded
short colimns, for which the strength is governed entirely by the strength of the mate-
rials and the geometry of the cross section. Most columns in present-day practice fall
in that category. However, with the increasing use of high-strength materials and
improved methods of dimensioning members, it is now possible, for a given value of
axial load, with or without simultaneous bending. to design a much smaller cross sec-
tion than in the past. This clearly makes for more slender members. It is because of
this, together with the use of more innovative structural concepts, that rational and reli-
able design procedures for slender columns have become increasingly important,

A column is said to be slender if its cross-sectional dimensions are small com-
pared with its length, The degree of slenderness is generally expressed in terms of the
slenderness ratio [ r, where [ is the unsupported length of the member and r is the
radius of gyration of its cross section, equal to - [ A, For square or circular members,
the value of r is the same about either axis: for other shapes r is smallest about the
minor principal axis, and it is generally this value that must be used in determining the
slenderness ratio of a free-standing column.

It has long been known that a2 member of great slenderness will collapse under a
smaller compression load than a stocky member with the same cross-sectional dimen-
sions. When a stocky member, say with [ = 10 (e.g., a square column of length equal
to about 3 times its cross-sectional dimension h), is loaded in axial compression, it will
fail at the load given by Eq. (8.3), because at that load both concrete and steel are
stressed to their maximum carrying capacity and give way, respectively, by crushing
and by yielding. If a member with the same cross section has a slenderness ratio - r =
100 (e.g.. a square column hinged at both ends and of length equal to about 30 times
it section dimension}, it may fail under an axial load equal to one-half or less of that
given by Eq. (8.3). In this case, collapse is caused by buckling, i.e., by sudden lateral
displacement of the member between its ends, with consequent overstressing of steel
and concrete by the bending stresses that are superimposed on the axial compressive
stresses.

Most columns in practice are subjected to bending moments as well as axial
loads, as was made clear in Chapter 8. These moments produce lateral deflection of a
member between its ends and may also result in relative lateral displacement of joints.
Associated with these lateral displacements are secondary moments that add to the pri-
mary moments and that may become very large for slender columns, leading to fail-
ure, A practical definition of a slender column is one for which there is a significant
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reduction in axial load capacity because of these secondary moments. In the develop-
ment of ACI Code column provisions, for example, any reduction greater than about
5 percent is considered significant, requiring consideration of slenderness effects.

The ACI Code and Commentary contain detailed provisions governing the
design of slender columns, ACI Code 10011, 10,12, and 10,13 present approximate
methods for accounting for slenderness through the use of moment magnificarion fac-
tors. The provisions are quite similar to those used for steel columns designed under
the American Institute of Steel Construction (AISC) Specification. Alternatively, in
ACI Code 10,10, a more fundamental approach is endorsed. in which the effect of lat-
eral displacements is accounted for directly in the frame analysis. Because of the
increasing complexity of the moment magnification approach. as it has been refined
in recent years, with its many detailed requirements, and because of the universal
availability of computers in the design office. there is increasing interest in “second-
order analysis™ as suggested in ACI Code 10.10, in which the effect of lateral dis-
placements is computed directly.

As noted, most columns in practice continue to be short columns. Simple expres-
sions are included in the ACI Code to determine whether slenderness effects must be
considered. These will be presented in Section 9.4 following the development of back-
ground information in Sections 9.2 and 9.3 relating to column buckling and slender-
ness effects.

ConNceNnTRIcALLY LoADED COLUMNS

The basic information on the behavior of straight, concentrically loaded slender
columns was developed by Euler more than 200 vears ago. In generalized form, it
states that such a member will fail by buckling at the eritical load

P (9.1)
C ok '

It is seen that the buckling load decreases rapidly with increasing slendermness rario
kil r (Ret. 9.1).

For the simplest case of a column hinged at both ends and made of elastic mate-
rial, £, simply becomes Young's modulus and &/ is equal to the actual length [ of the
colummn. At the load given by Eq. (9.1), the originally straight member buckles into a
half sine wave, as shown in Fig. 9.1a. In this bent configuration, bending moments Py
act at any section such as a; v is the deflection at that section. These deflections con-
tinue to increase until the bending stress caused by the increasing moment, together
with the original compression stress, overstresses and fails the member.

If the stress-strain curve of a short piece of the given member has the shape
shown in Fig. 9.2a, as it would be for reinforced concrete columns, E; is equal to
Young's modulus, provided that the buckling stress P, A is below the proportional
limit f,. If the strain is larger than f,. buckling occurs in the inelastic range. In this
case, in Eq. (9.1}, £, is the tangent modulus, i.e.. the slope of the tangent to the stress-
strain curve. As the stress increases, E, decreases. A plot of the buckling load vs. the
slenderness ratio, the so-called column curve, therefore has the shape given in Fig,
9.25h, which shows the reduction in buckling strength with increasing slenderness. For
very stocky columns, the value of the buckling load. caleulated from Eq. (9.1),
exceeds the direct crushing strength of the stocky column P, given by Eq. (8.3). This
is also shown in Fig. 9.2h. Correspondingly, there is a limiting slenderness ratio



Milson-Darwin-Dolan: 9. Sleader Columns Text
Design of Concrete

Structures, Thirteenth

Edition

SLENDER COLUMNS 289

FIGURE 9.1
Buckling and effective length
of axially loaded columns.
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(ki-r)y,. For values smaller than this, failure oceurs by simple crushing, regardless of
ki-r; for values larger than (&l r},. failure occurs by buckling, the buckling load or
stress decreasing for greater slenderness,

If a member is fixed against rotation at both ends, it buckles in the shape of Fig.
Y16, with inflection points (1P} as shown. The portion between the inflection points is
in precisely the same situation as the hinge-ended column of Fig. 9.1a, and thus, the
effective length ki of the fixed-fixed column, ie., the distance between inflection
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points, is seen o be & = [ 2. Equation (9. 1) shows that an elastic column fixed at both
ends will carry 4 times as much load as when hinged.

Columns in real strectures are rarely either hinged or fixed but have ends par-
tially restrained against rotation by abutting members, This is shown schematically in
Fig. 9.1¢, from which it is seen that for such members the effective length &/, i.e., the
distance between inflection points, has a value between [ and [- 2, The precise value
depends on the degree of end restraint, i.¢., on the ratio of the stiffness £5- 7 of the col-
umn to the sum of stiffnesses EX-[ of the restraining members at both ends,

In the columns of Fig. 9. 1a to ¢, it was assumed that one end was prevented from
moving laterally relative to the other end. by horizontal bracing or otherwise. In this
case, it is seen that the effective length &7 is always smaller than {or at most it is equal
o) the real fength [

If a column is fixed at one end and entirely free at the other (cantilever column
or flagpole), it buckles as shown in Fig, @14, Thart is, the upper end moves laterally
with respect to the lower, a kind of deformation known as sidesway, It buckles into a
quarter of a sine wave and is therefore analogous o the upper half of the hinged col-
umn in Fig. 9.1q. The inflection points, one at the end of the actal column and the
other at the imaginary extension of the sine wave, are a distance 27 apart, so that the
effective length is &1 = 21

If the column is rotationally fixed at both ends but one end can move laterally
with respect to the other, it buckles as shown in Fig. 9.1e, with an effective length
ki = [ If one compares this column, fixed at both ends but free to sidesway, with a
fixed-fixed column that is braced against sidesway (Fig. 9.18), one sees that the effec-
tive length of the former is twice that of the later, By Eq. (2.1), this means that the
buckling strength of an elastic fixed-fixed column that is free o sidesway is only one-
quarter that of the same column when braced against sidesway. This is an illustration
of the general fact that compression members free fo buckle in a sidesway mode are
always considerably weaker than when braced against sidesway,

Again, the ends of columns in actual structures are rarely either hinged, fixed. or
entirely free but are usually restrained by abutting members. If sidesway is not pre-
vented. buckling occurs as shown in Fig. 9.1 and the effective length, as before,
depends on the degree of restraint, If the cross beams are very rigid compared with the
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column, the case of Fig. 9.1¢ is approached and &/ is only slightly larger than {. On the
other hand. if the restraining members are extremely flexible, a hinged condition is
approached at both ends. Evidently, a column hinged at both ends and free to sidesway
is unstable. It will simply topple. being unable to carry any load whatever.

In reinforced concrete structures, one is rarely concerned with single members
but rather with rigid frames of various configurations. The manner in which the rela-
tionships just described affect the buckling behavior of frames is illustrated by the
simple portal frame shown in Fig. 9.3, with loads applied concentrically to the
columns. If sidesway is prevented. as indicated schematically by the brace in Fig. 9 3a.
the buckling configuration will be as shown. The buckled shape of the column corre-
sponds to that in Fig., 9.1¢, except that the lower end is hinged. It is seen that the effec-
tive length kf is smaller than /. On the other hand, if no sidesway bracing is provided
to an otherwise identical frame, buckling occurs as shown in Fig. 9.35. The column is
in a situation similar to that shown in Fig. 9,14, upside down, except that the upper end
is not fixed but only partially restrained by the girder. It is seen that the effective length
kl exceeds 2/ by an amount depending on the degree of restraint. The buckling strength
depends on & rin the manner shown in Fig, 9.2k, As a consequence, even though they
are dimensionally identical, the unbraced frame will buckle at a radically smaller load
than the braced frame.

In summary, the following can be noted:

1. The strength of concentrically loaded columns decreases with increasing slen-
derness ratio & r.

2. In columns that are braced against sidesway or that are parts of frames braced
against sidesway. the effective length &, ie., the distance between intlection
points, falls between [ 2 and [, depending on the degree of end restraint.

3. The effective lengths of columns that are nor braced against sidesway or that are
parts of frames not so braced are always larger than /. the more so the smaller the
end restraint. In consequence, the buckling load of a frame not braced against
sidesway is always substantially smaller than that of the same frame when braced.

CompressiON PLus BENDING

Muost reinforced concrete compression members are also subject to simultaneous flex-
ure, caused by transverse loads or by end moments owing to continuity. The behavior of
members subject to such combined loading also depends greatly on their slenderness.
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FIGURE 9.4

Moments in slender members
with compression plus
bending, bent in single
curvature,
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Figure 9.4a shows such a member, axially loaded by P and bent by equal end
moments M,. If no axial load were present. the moment M, in the member would be
constant throughout and equal to the end moments M. This is shown in Fig. 9.46. In
this situation, i.e.. in simple bending without axial compression, the member deflects
as shown by the dashed curve of Fig. 9.4a, where v, represents the deflection at any
point caused by bending only. When P is applied. the moment at any point increases
by an amount equal to P times its lever arm. The increased moments cause additional
deflections. so that the deflection curve under the simultaneous action of P and M, is
the solid curve of Fig. 9.4a. At any point, then. the total moment is now

M = M, + Py (9.2)

1.e., the total moment consists of the moment M, that acts in the presence of F and the
additional moment caused by P, equal to F times the deflection. This is one illustra-
tion of the so-called P-A effect.

A similar sitwation is shown in Fig. 9.4¢, where bending is caused by the trans-
verse load H. When P is absent, the moment at any point x is M, = Hx- 2, with a max-
imum value at midspan equal 1o HI-4. The corresponding M, diagram is shown in Fig,
O.4d. When P is applied, additional momems Py are caused again, distributed as
shown, and the wotal moment at any point in the member consists of the same two parts
as in Eq. (9.2},

The deflections v of elastic columns of the type shown in Fig. 9.4 can be calcu-
lated from the deflections v, that is, from the deflections of the corresponding beam
without axial Ioad, using the following expression (see, for example, Ref, 9.1}

1
Y=NTTR (9.3)
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If & is the deflection at the point of maximum moment M, ., as shown in Fig,
9.4, M., can be calculated using Eqgs. (9.2) and (9.3).

|
M =M, +P =M, +P ,— 9.4
AT o K 0 1 - P.Pr { }

It can be shown (Ref. 9.2) that Eq. (9.4) can be written

y M 1+ PP, ©.5)

Mgy = 0 | — p- P[- i
where - is a coefficient that depends on the type of loading and varies between about
=0.20 for most practical cases. Because P- P, is always significantly smaller than 1,
the second term in the numerator of Eg. (9.5) is small enough to be neglected. Doing
so, one obtains the simplified design equation

1
Mnmn‘ = ME? | - p. P(. {9[‘!-}
where 1-{1 — P P,}is known as the mement magnification factor, which reflects the
amount by which the moment M, 1s magnified by the presence of a simultaneous axial
force P,

Since P, decreases with increasing slenderness ratio, it is seen from Eg. (9.6)
that the moment M in the member increases with the slenderness ratio k- r. The situ-
ation 18 shown schematically in Fig. 9.5, It indicates that, for a given transverse load-
ing {i.e., a given value of M), an axial force P causes a larger additional moment in a
slender member than in a stocky member.

In the two members in Fig. 9.4, the largest moment caused by P, namely PA,
adds directly to the maximum value of M for example,

_H

M
0y

in Fig. 9.4d. As P increases, the maximum moment at midspan increases at a rate
faster than that of P in the manner given by Egs. (9.2) and (9.6) and shown in Fig. 9.6.
The member will fail when the simultaneous values of P and M become equal o P,
and M, the nominal strength of the cross section at the location of maximum moment.
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Moments in slender members
with compression plus
bending, bent in double

curvabune.

This direct addition of the maximum moment caused by P to the maximum
moment caused by the transverse load, clearly the most unfavorable situation, does not
result for all types of deformations. For instance, the member in Fig. 9.7a, with equal
and opposite end moments, has the M, diagram shown in Fig. 9.7h. The deflections
caused by M, alone are again magnified when an axial load P is applied. In this case,
these deflections under simultaneous bending and compression can be approximated
by (Ref. 9.1)

y=y (9.7)

By comparison with Eg. {(9.3) it is seen that the deflection magnification here is much
smaller,

The additdonal moments Py caused by the axial load are distributed as shown in
Fig. 9.7¢. Although the M, moments are largest at the ends, the Py moments are seen

Mmax = Mg + Py
My Mpay = Me -

—————

{a) (b} {c) {d) (e)
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to be largest at some distance from the ends. Depending on their relative magnitudes,
the total moments M = M, + Py are distributed as shown in either Fig. 9.7d ore. In
the former case. the maximum moment continues to act at the end and to be equal to
M . the presence of the axial force, then, does not result in any increase in the maxi-
mum moment. Alternatively, in the case of Fig. 9.7e, the maximum moment is located
at some distance from the end: at that location M, is significantly smaller than its max-
imum value M,. and for this reason the added moment Py increases the maximum
moment to a value only moderately greater than M.

Comparing Figs. 9.4 and 9.7, one can generalize as follows. The moment M,, will
be magnitied most strongly when the location where M, is largest coincides with that
where the detlection v, is largest. This occurs in members bent into single curvature
by symmetrical loads or equal end moments. If the two end moments of Fig. 9.4a are
unequal but of the same sign. i.e.. producing single curvature, M,, will still be strongly
magnified, though not quite so much as for equal end moments. On the other hand. as
evident from Fig. 9.7, there will be little or possibly no magnification if the end
moments are of opposite sign and produce an inflection point along the member.

It can be shown (Ref. 9.2) that the way in which moment magnification depends
on the relative magnitude of the two end moments (as in Figs. 9.4a and 9.74) can be
expressed by a modification of Eq. (9.6):

Co

M= My l""—PPc (9.8)

where

M
C,=06+04—=04 (9.9)
M,

Here M, is the numerically smaller and M, the numerically larger of the two end
moments: hence, by definition, M;, = M,. The fraction M- M, is defined as positive if
the end moments produce single curvature and negative if they produce double curva-
ture. It is seen that when M, = M, as in Fig. 9.4a, C, = 1. so that Eq. (9.8) becomes
Eq. (9.6), as it should. It is to be noted that Eq. (9.9) applies onlv 1o members hraced
against sidesway. As will become apparent from the discussion that follows, for mem-
bers not braced against sidesway, maximum moment magnification usually occurs,
that is, C, =1,

Members that are braced against sidesway include columns that are parts of
structures in which sidesway is prevented in one of various ways: by walls sufficiently
strong and rigid in their own planes to effectively prevent horizontal displacement: by
special bracing in vertical planes; in buildings by designing the wtility core to resist
horizontal Ioads and furnish bracing to the frames: or by bracing the frame against
some other essentially immovable support.

If no such bracing is provided, sidesway can occur only for the entive frame
sinulrgneousty, not tor individual columns in the frame, If this is the case, the com-
bined effect of bending and axial load is somewhat different from that in braced
columns. As an illustration, consider the simple portal frame of Fig. 9.84 subject to a
horizontal load H. such as a wind load, and compression forces P, such as from grav-
ity loads. The moments M,, caused by H alone. in the absence of P, are shown in Fig.
9,88, the corresponding deformation of the frame is given in dashed curves, When P is
added. horizontal moments are caused that result in the magnified deformations shown
in solid curves and in the moment diagram of Fig. 9.84. It is seen that the maximum
values of M, both positive and negative, and the maximum values of the additional
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FIGURE 9.8 Moments from
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moments M, of the same sign occur at the same locations, namely. at the ends of the
columns. They are therefore fully additive, leading to a large moment magnification. In
contrast, if the frame in Fig. 9.8 is laterally braced and vertically loaded, Fig. 9.9 shows
that the maximum values of the two different moments occur in different locations; the
moment magnification, if any, is therefore much smaller, as correctly expressed by C,..

It should be noted that the moments that cause a frame to sidesway need not be
caused by horizontal loads as in Fig. 9.8, Asymmetries, either of frame configuration
or vertical loading or both, also result in sidesway displacements. In this case. the
presence of axial column loads again results in the increased deflection and moment
magnification.

In summary, it can be stated as follows:

1. In flexural members, the presence of axial compression causes additional deflec-
tions and additional moments Py. Other things being equal, the additional
moments increase with increasing slenderness ratio kf- r.

2. In members braced against sidesway and bent in single curvature, the maxima of
both types of moments, M, and Py, occur at the same or at nearby locations and
are fully additive: this leads to large moment magnifications. If the M, moments
result in double curvature (i.e., in the occurrence of an inflection point), the oppo-
site is true and less or no moment magnification oceurs,

FIGURE 9.9 P P
Fixned portal frame, laterally
braced. =‘E Mg max
7 =]
MF‘. max l
YT oy i

{a) (b) (e
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3. In members in frames not braced against sidesway, the maximum moments of
both kinds. M), and Pv. almost always occur at the same locations, the ends of the
columns; they are fully additive, regardless of the presence or absence of an
inflection point. Here. too, other things being equal. the additional deflections
and the corresponding moments increase with increasing & r.

This discussion is a simplified presentation of a fairly complex subject, The pro-
visions of the ACI Code regarding slender columns are based on the behavior and the
corresponding equations that have just been presented. They take account, in an
approximate manner, of the additional complexities that arise from the fact that con-
crete is not an elastic material, that tension cracking changes the moment of inertia of
a member, and that under sustained load, creep increases the short-term deflections
and, thereby, the moments caused by these deflections,

ACI| CriTERIA EOR NEGLECTING OF SLENDERNESS EEEECTS

The procedure of designing slender columns is inevitably lengthy. particularly because
it involves a trial-and-error process. At the same time, studies have shown that most
columns in existing buildings are sufficiently stocky that slenderness effects reduce
their capacity only a few percent, As stated in Chapter 8, an ACI-ASCE survey indi-
cated that 90 percent of columns braced against sway, and 40 percent of unbraced
columns, could be designed as short columns; i.e., they could develop essentially the
full cross-sectional strength with little or no reduction from slenderess (Ref. 9.3).
Furthermore, lateral bracing is usually provided by shear walls, elevator shafts, stair-
wells, or other elements for which resistance to lateral deflection is much greater than
for the columns of the building frame. It can be concluded that in most cases in rein-
forced concrete buildings, slenderness effects may be neglected.

To permit the designer to dispense with the complicated analysis required for
slender column design for these ordinary cases, ACl Code 10.12.2 and 10.13.2 provide
limits below which the effects of slendemess are insignificant and may be neglected.
These limits are adjusted to result in a maximum unaccounted reduction in column
capacity of no more than 5 percent. Separate himits are apphied to braced and unbraced
frames, alternately described in the ACI Code as nonsway and sway frames, respec-
tively, The Code provisions are as follows:

1. For compression members in nonsway frames. the effects of slenderness may
be neglected when ki r = 34 — 12M - M., where (34 — 12M - M) is not taken
greater than 40.

2. For compression members in sway frames. the effects of slenderness may be
neglected when & ris less than 22,

In these provisions, & is the effective length factor (see Section 9.2} [, is the unsup-
ported length, taken as the clear distance between floor slabs, beams. or other mem-
bers providing lateral support: M, is the smaller factored end moment on the com-
pression member, positive if the member is bent in single curvature and negative if
bent in double curvature: and M, is the larger factored end moment on the compres-
sion member, always positive.

The radius of gyration r for rectangular columns may be taken as 0,304, where
h is the overall cross-sectional dimension in the direction in which stability is being
considered. For circular members, it may be taken as (.25 times the diameter. For
other shapes, r may be computed for the gross concrete section.
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In accordance with ACI Code 10.12.1, k must be taken as 1.0 for nonsway frames,
unless a lower value is supported by analysis. For sway frames, & must be determined
by analysis in all cases, in accordance with ACI Code 10013.1. The ACT criteria for
determining & for both braced and unbraced columns are discussed in Section 9.6.

ACI CriTErRIA EOR NONSwAY VERSUS Sway FrRAMES

The discussion of Section 9.3 clearly shows important differences in the behavior of
slender columns in nonsway (braced) frames and comesponding columns in sway
(unbraced) frames. ACI Code provisions and Commentary guidelines for the approx-
imate design of slender columns reflect this, and there are separate provisions in each
refating to the important parameters in nonsway vs. sway frames. including moment
magnification factors and effective length factors.

In actual structures, a frame is seldom either completely braced or completely
unbraced. It is necessary, therefore, to determine in advance if bracing provided by
shear walls, elevator and utility shafts, stairwells. or other elements is adequate to
restrain the frame against significant sway effects. Both the ACI Code and Commen-
tary provide guidance.

As suggested in ACI Commentary 10.11.4, a compression member can be
assumed braced if it is located in a story in which the bracing elements (shear walls,
etc.) have a stiffness substantial enough to limit lateral deflection to the extent that the
column strength is not substantially affected. Such a determination can often be made
by inspection. If not, ACI Code 10.11.4 provides two alternate criteria for determin-
ing if columns and stories are treated as nonsway or sway.

To be considered as a nonsway or braced column, the first criterion requires that
the increase in column end moment due to second-order effects must not exceed 5 per-
cent of the first-order end moments, The designer is free to select the method for such
a determination.

As an alternative, the Code allows a story to be considered nonsway when the
stability index

0= —" (9.10)

for a story is not greater than 0.05, where P, and V, are the total factored vertical
load and story shear, respectively, for the story; & is the first-order relative deflection
between the top and the bottom of the story due to V,; and [, is the length of the com-
pressive member measured center-to-center of the joints in the frame. ACI
Commentary 10,11.4 provides the guidance that 2P, should be based on the lateral
loading that maximizes the value of ZP,; the case of V, = 0 is not included. In most
cases, this calculation involves the combinations of load factors in Table 1.2 for wind,
carthquake, or soil pressure (¢.g.. 1.20 + 1L.L6W + 1.0L + 0.5L,).

As shown in Refs, 9.3 and 9.4, for () not greater than 0.6, the stability index
closely approximates the ratio £ P used in the calculation of the moment magnifica-
tion factor, so that 1-(I — P-P,) can be replaced by 1-(1 — Q). Thus, for @ = 0.05,
Mrlm.l‘ = l'['lﬁ"",fl.?'.lL

T The near equivalence of O o 2P for reinforced concrete columns can be dermonstrated vsing a single sway colwmmn with ends Nixed against
mogation, as shown in Fig. 9.0, For this column, ¢ = FA -V, 1 Since V- & = the laeral stiffoess of the column = 12EF 17, the stability index
can be expressed as @ = P (12EF 7). For an snsupported fength of the colomn (the length used o caleslate P30 = 09 and P = P, 0 =
P9 T2ER 2 compared o P-P.= P CER) = P (98TEL
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In accordance with ACI Code 10.11.1, the section properties of the frame mem-
bers used to calculate ¢ must take into account the effects of axial loads, cracked
regions along the length of the member, and the duration of the loads. Alternately, the
section properties may be represented using the modulus of elasticity £, given in Eq.
(2.3) and the following section properties:

Moments of inertia
Beams (1354

Columns (}.Tﬁfi
Walls—uncracked (}.Tﬂfp

—cracked (}.351&,
Flat plates and flat slabs 0.254,
Area 1.0A,

The moments of inertia must be divided by (1 + - )
when sustained lateral loads act or for stability checks
(under ACI Code 10.13.6—described in Section 9.7).

where [, and A, are based on the gross concrete cross section, neglecting reinforce-
ment, and -, for calculating A, in Eq. (9.10) is the ratio of the maximum factored sus-
tained shear within a story to the maximum factored shear in that story to account for
the effects of creep. As discussed in Section 12.5, [, for T beams can be closely
approximated as 2 times /, for the web. The reduced values of I given above take into
account the effect of nonlinear material behavior on the effective stiffness of the mem-
bers. Reference 9.3 shows that the Code values for moments of inertia underestimate
the true moments of inertia and conservatively overestimate second-order effects by
20 to 25 percent for reinforced concrete frames.

ACI Moment MacnirieEr METHOD EOr Nonsway FRAMES

A slender reinforced concrete column reaches the limit of its strength when the com-
bination of P and M at the most highly stressed section causes that section to fail. In
general, P is essentially constant along the length of the member. This means that the
column approaches failure when, at the most highly stressed section, the axial force P
combines with a moment M = M, . as given by Eq. (9.8). so that this combination
becomes equal to P, and M, which will cause the section to fail. This is easily visu-
alized by means of Fig. 9.10.

For a column of given cross section, Fig. 9.10 presents a typical interaction dia-
gram. For simplicity, suppose that the column is bent in single curvature with equal
eccentricities at both ends. For this eccentricity, the strength of the cross section is
given by point A on the interaction curve. If the column is stocky enough for the
moment magnification to be negligibly small, then P, .. at point A represents the
member strength of the column under the simultaneous moment M, . = e,P, . ..

On the other hand. if the same column is sufficiently slender. significant moment
magnification will oceur with increasing F. Then the moment at the most highly
stressed section is M. as given by Eq. (9.8), with C, = | because of equal end
eccentricities. The solid curve in Fig, 9.10 shows the nonlinear increase of M, as P
increases. The point where this curve intersects the interaction curve. Le. point B,
defines the member strength P, . .. of the slender column, combined with the simul-
taneously applied end moments M, = e,P, .~ 1f end moments are unequal. the fac-

tor C,, will be less than [, as discussed in Section 9.3.
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FIGURE 9.10 P

Effect of slenderness on
carying capacity.

ACI Code 10.11.1 specifies that axial loads and end moments in columns must
be determined by a conventional elastic frame analysis (sec Chapter 12) wsing the sec-
tion properties given in Section 9.5, The member is then designed for that axial load
and a simultancous magnified column moment.

For a nonsway frame, the ACI Code equation for magnified moment, acting with
the factored axial load P, is written as follows:

M= M (911}
where the moment magnification factor is
Con
. = = 2
© =T 07sP I (9.12)

In Egs. (9.11) and (9.12), the subscript ns denotes a nonsway frame. The 0.75 term in
Eq. (9.12) is a stiffnesy reduction foctor, designed to provide a conservative estimate
of P.. The critical load P, in accordance with Eq. (9.1), is given as

-

- KT

rC = _kf"_z

(9.13)

where {, is defined as the unsupported length of the compression member. The value
of k in Eq. (%.13) should be set equal to 10O, unless caleulated using the values of E,
and [ given in Section 9.5 and procedures described later in this section,

In Eqg. (9.12), the value of C is as previously given in Eq. (9.9)

M,

C,=06+04 =04 (9.9}

-

for members braced against sidesway and without transverse loads between supports,
Here M, is the larger of the two end moments, and M- M, is positive when the end
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moments produce single curvature and negative when they produce double curvature.
The variation of C,, with M, M, is shown in Fig. 9.11. In Eq. (9.12), when the calcu-
lated value of -, is smaller than [, it indicates that the larger of the two end moments,
M., is the largest moment in the column, a situation depicted in Fig. 9.7

In this way the ACI Code provides for the capacity-reducing effects of slender-
ness in nonsway frames by means of the moment magnification factor - . However,
it is well known that for columns with no or very small applied moments, i.e.. axially
or nearly axially loaded columns, increasing slenderness also reduces the column
strength. For this situation, ACI Code 10.12.3.2 provides that the factored moment M,
in Eq. (9.11) shall not be taken less than:

Jiw?..lrar'rl = Pu':ﬂh + D{:Bh} {91‘4}

about each axis separately, where 0.6 and & are in inches. For members in which M, .,
exceeds M, the value of C, in Eq. (9.9} is taken equal 1o 1.0 or is based on the ratio
of the computed end moments M, and M.

The value of £/ used in Eq. (9.13) o calculate F, for an individual member must
be both accurate and reasonably conservative to account for the greater variability
inherent in the properties of individual columns, as compared o the properties of the
reinforced concrete frame, as a whole, The values of EI provided in Section 9.5 are
adequate for general frame analysis but not for establishing F, for individual columns,

In homogeneous elastic members, such as steel columns, E7 is easily obtained
from Young's modulus and the usual moment of inertia. Reinforced concrete columns,
however, are nonhomogeneous, since they consist of both steel and concrete. Whereas
steel is substantially elastic, concrere is not and is. in addition, subject to creep and o
cracking if tension occurs on the convex side of the column. All of these factors affect
the effective value of ET for a reinforced conerete member. It is possible by computer
methods to caleulate fairly realistic effective section properties, taking account of
these factors. Even these caleulations are no more accurate than the assumptions on
which they are based. On the basis of claborate studies, both analytical and experi-
mental (Ref, 9.5), the ACT Code requires that ET be determined by either

0.2E,1, + E 1,
El = ——F % (9.15)
L+
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or by the simpler expression

0.4E,1,

ﬁf:1+'d

(9.16)

where £ = modulus of elasticity of concrete, psi

/. = moment of inertia of gross section of column, in*

E, = modulus of elasticity of steel = 29,000,000 psi

[, = moment of inertia of reinforcement about centroidal axis of member
cross section, in®

- ¢ = ratio of maximum factored axial sustained load to maximum factored axial
load associated with the same load combination (this definition differs

from that used in Section 9.5 to calculate A )

e

The factor -, accounts approximately for the effects of creep. That is, the larger
the sustained loads, the larger are the creep deformations and corresponding curva-
tures. Consequently. the larger the sustained loads relative to the temporary loads, the
smaller the effective rigidity. as correctly reflected in Egs. (9.15) and (9.16). Because,
of the two materials, only concrete is subject to creep, and reinforcing steel as ordi-
narily used is not, the argument can be made that the creep parameter 1 + -, should
be applied only to the term 0.2E.{, in Eq. (9.15). However, as explained in ACI
Commentary 10,12.3, the creep parameter is applied to both terms because of the
potential for premature yielding of steel in columns under sustained loading.

Both Egs. (9.15) and (9.16) are conservative lower limits for large numbers of
investigated actual members (Ref. 9.3}, The simpler but more conservative Eq. (9.16)
is not unreasonable for lightly reinforced members, but it greatly underestimates the
effect of reinforcement for more heavily reinforced members, i.e., for the range of
higher - values. Equation (9.15) is more reliable for the entire range of - and defi-
nitely preferable for medium and high - values (Ref, 9.6),

An accurate determination of the effective length factor & is essential in connec-
tion with Egs. (9.11) and (9.13). In Section 9.2, it was shown that, for frames braced
against sidesway (nonsway frames), k varies from 1 to 1, whereas for laterally unbraced
frames (sway frames), it varies from 1 to %, depending on the degree of rotational
restraint at both ends. This was illustrated in Fig. 9.1, For frames, it is seen that this
degree of rotational restraint depends on whether the stiffnesses of the beams framing
into the column at top and bottom are large or small compared with the stiffness of the
column itself. An approximate but generally satisfactory way of determining k is by
means of alignment charis based on isolating the given column plus all members fram-
ing into it at top and bottom, as shown in Fig. 9.12. The degree of end restraint at each
endis - = Z(El [, of columns) + Z(ES| of floor members). Only floor members that
are in a plane at either end of the column are to be included. The value of & can be read
directly from the chart of Fig. 9.13, as illustrated by the dashed lines.®

It is seen that & must be known before a column in a frame can be dimensioned.
Yet k depends on the stiffness £7-/ of the members to be dimensioned, as well as on
that of the abutting members. Thus, the dimensioning process necessarily involves
iteration; i.e.. one assumes member sizes, calculates member stiftnesses and corre-
sponding k values, and then calculates the critical buckling load and more accurate

T Allermative to the use ol charts are equations for the determination of effective length factors & developed in Rels. 9.7 through 9.9 and given in
ACT Commmentary 10,121, Even more sceurate expressions {or & ane given in Rel, 900, The eguatons are more convenient in developing

cormpuler soluions,
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{a) Monsway frames

Alignment charts for effective length factors &

(b} Sway frames

member sizes on the basis of these & values until assumed and final member sizes
coincide or are satisfactorily close. The stiffness EF [ should be calculated based on
the values of £, and [ given in Section 9.5, and the span lengths of the members /. and
[ should be measured center-to-center of the joints.
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An outline of the separate steps in the analysis/design procedure for nonsway
frames follows along these lines:

1. Select a trial column section to carry the factored axial load P, and moment M,
= M, from the elastic first-order frame analysis, assuming short column behav-
ior and following the procedures of Chapter 8.

2. Determine if the frame should be considered as nonsway or sway, using the cri-
teria of Section 9.5,

3. Find the unsupported length /.

4. For the wial column, check for consideration of slenderness effects using the cri-
teria of Section 9.4 with £ = 1.0,

5, If slenderness is tentatively found to be important, refine the calculation of &
based on the alignment chart in Fig, 9.13q, with member stiffnesses I (Section
8.5} and rotational restraint factors - based on wial member sizes, Recheck
against the slenderness criteria.

6, If moments from the frame analysis are small, check o determine if the minimum

moment from Eq. (9.14) controls.

Calculate the equivalent uniform moment factor C,, from Eq. (9.9).

Caleulate - . ET from Eq. (9.15) or (9.16), and P, from Eq. (9.13) for the trial col-

wmn,

9. Calculate the moment magnification factor -, from Eq. (9.12) and magnified
moment M, from Eq. (9.11).

10, Check the adequacy of the column to resist axial load and magnified moment,
using the column design charts of Appendix A in the vsual way. Revise the col-
umn section and reinforcement if necessary,

11, If column dimensions are altered, repeat the calculations for &, -, and P, based
on the new cross section. Determine the revised moment magnification factor and
check the adequacy of the new design,

® M

EXAMPLE 9.1 Design of a slender column in a nonsway frame, Figure 9,14 shows an elevation view
of a multistory concrete frame building, with 48 in, wide ® 12 in. deep beams on all col-
umn fines, carrying two-way slab floors and roof. The clear height of the columns is 13 ft.
Interior columns are tentatively dimensioned at 18 % 18 in.. and exterior columns at 16 *
16 in. The frame is effectively braced against sway by stair and elevator shafts having con-
crete walls that are monolithic with the floors, located in the building corners (not shown in
the figure), The structure will be subjected to vertical dead and live loads, Trial caleulations
by first-order analysis indicate that the pattern of live loading shown in Fig, 914, with full
load distribution on roof and upper floors and a checkerboard pattern adjacent to column C3,
produces maximum moments with single curvature in that column, at nearly maximum axial
load, Dead loads act on all spans. Service load values of dead and live load axial force and
moments for the typical interior column €3 are as follows:

Dread load Live lpad

P = 230 kips F= 173 kips
M, = 2 fi-kips M, = 108 fi-kips
M, = =2 fikips M, = 100 fi-kips

The column i3 subjected to double curvature wnder dead load alone and single curvature
under live load.

Design column O3, using the ACT moment magnitier method. Use ) = 4000 psiand f, =
60,000 psi. '
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Sorvrion,  The columm will first be designed as a short column, asswming no slenderness
effect. With the application of the usual load factors.

P, = 12230 + 1.6 % 173 = 553 kips
M, =12 %2+ 1.6 108 = I75 fi-kips

For an 18 > 18 . column, with the 1.5 in. elear to the outside steel, No. 3 (No. 10) stir-
rups. and (assumed) No, 10 (No. 32} longitudinal steel:

o= 1800 - 2 X 150 - 2038 - 12718 =072
Graph A.6 for - = 0.70, with bars arranged around the column perimeter, will be vsed, Then

P, 553
= = .6356
fiA, 065 X 4 %324
M, 175 % 12
=0.138

foAJ 065X 4324 % 18

and from the graph -, = 0.02. This is low enough that an increase in steel area could be
made, if necessary, 1o allow for slenderness, and the 18 3< 18 in, concrete dimensions will
be retained.

For an initial check on slenderness, an effective length factor & = 1.0 will be used. Then

ﬂ_l.ﬂxﬁxl:

= [
r 0318 289

For a braced frame, the upper limit for short column behavior is
12X =2 + 1.6 X 100

M,
34— = 34— =23
T N L L

The caleulated value of 28.9 exceeds this, so slenderness must be considered in the design,
A more refined calculation of the effective length factor & is thus called for.

Because £ is the same for column and beams, it will be canceled in the stiffness caleu-
lations. For this step, the column moment of inertia is 0.7/, = 0.7 X 18 X 1812 =
6124 int, giving 11, = 6124-(14 = 12) = 36.5 in". For the beams, the moment of inertia
will be taken as 0.35/,, where [, is taken as 2 times the gross moment of inertia of the web.
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Thus, 0.35], = 0.35 X 2 X 48 X 12812 = 4838 in*, and |1 = 4838 (24 x 12) = 16.8 in’.
Rotational restraint factors at the top and bottom of column C3 are the same and are

365+ 36.5
T 168 + 168

A= = 2.17
From Fig, 9.13q for the braced frame, the value of & 1s 0.87, rather than 1.0 as vsed previ-
ously. Consequently,

K, 087 x13x12

v 03 xi1s ot

This is still above the limit value of 23.3, confirming that slenderness must be considered.
A check will now be made of minimum moment. According to Eq. (9.14). M, ., =
353 > (06 + 0,03 % 18) 12 = 53 ft-kips. It is seen that this does not control.
The coeflicient C,, can now be found from Eq, (9.9 with M| = 1.2 = (—=2) + 1.6 x 100
= 158 ft-kips and M, = 1.2 %X 2 + 1.6 X 108 = 175 fi-kips:

5
C,=06+04 % = (196

Next the factor -, will be found based on the ratio of the maximum factored sustained axial
load (the factored dead load in this case) to the maximuom factored axial load:

_ 1.2 = 230 _

T2 2304+ 16 % 173

0.50

For a relatively low reinforcement ratio, one estimated to be in the range of (.02 to 0.03, the
more approximate Eq. (9.16) for £7 will be used, and
= 0.4 3 360 > 10" = 18 % 18712

= %40 % 10% in*-
D 8.40 X 10 in~-1b

The critical buckling load is found from Eq. (9.13) 1o be

RN Tk BAD % 107
Yokt 08T = 1312

= 4.50 > 10" Ih

The moment magnification factor can now be found from Eg. (9.12)

Co B 0.96
MU= Po0TSP, 1 - 553075 X 4500

= L.15

Thus the required axial sirength of the column is P, = 333 kips (as before), while the mag-
nified design moment is M. = - M, = L 15 = IT5 = 201 fi-kips. With reference again to
the column design chart A6 with

P, 553 0687
LA, 065x4x 324
M % 12

. 201 % 1 o150

fAg 065 X 4 X 324 X 18

itis seen that the required reinforcement ratio is increased from 0,020 w 0,026 because of
slenderness. The steel area now required is

A, = 0.026 ¥ 324 = 8.42 in®

which can be provided using four No. 10 (No. 32) and four No. 9 (No. 29) bars (4, =
008 in?), arranged as shown in Fig, 915, Number 3 (No. 10) ties will be used at a spacing
not to exceed the least dimension of the column (18 in.), 48 te diameters (18 in.), or 16 bar
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FIGURE 9.15 :
e

Cross section of column O3,

ample 9.1,
Example 9.1 /}I ™4 No. 10 (No. 32) corners
18" 4 No. 9 (Mo, 29) sides
L ™ No. 3 (No. 10) ties @ 18"

1
Clear cover 13

diameters (18 in.). Single ties at 18 in. spacing. as shown in the figure, will meet reguire-
ments of the ACI Code.

Further refinements in the design could, of course, be made by recalculating the critical
buckling load using Eq. {%.15). This extra step is not justified here because the column slen-
derness is barely above the upper limit for short column behavior and the moment magnifi-
cation is not great.

ACI MoMeENT MaGNIFIER METHOD FOR SwaY FRAMES

The important differences in behavior between columns braced against sidesway and
columns for which sidesway is possible were discussed in Sections 9.2 and 9.3, The
critical load for a column P, depends on the effective length &, and although the
effective length factor k falls between 0.5 and 1.0 for braced columns, it is between
1.0 and = for columns that are unbraced (see Figs. 9.1 and 9.13). Consequently, an
unbraced column will buckle at a much smaller load than will a braced column that is
otherwise identical.

Columns subject to sidesway do not normally stand alone but are part of a struc-
tural system including floors and roof. A floor or roof is normally very stiff in its own
plane. Consequently, all columns at a given story level in a structure are subject to
essentially identical sway displacements: i.e., sidesway of a particular story can oceur
only by simultaneous lateral motion of all columns of that story, Clearly, all columns
at a given level must be considered together in evaluating slenderness effects relating
to sidesway.

On the other hand, it is also possible for a single column in a sway frame to
buckle individually under gravity loads, the ends of the column being held against rel-
ative lateral movement by other, stiffer columns at the same floor level. This possibil-
ity, resulting in magnification of nonsway moments due to gravity loads, must also be
considered in the analysis and design of slender columns in unbraced frames.

The ACI moment magnifier approach can still be used, but in frames subject to
sidesway. it is necessary, according to ACI Code 10.13.3, to separate the loads acting
on a structure into two categories: loads that result in no appreciable sidesway and loads
that result in appreciable sidesway. Clearly two separate frame analyses are required.
one for loads of each type. In general, gravity loads acting on reasonably symmetrical
frames produce little sway, and the effects of gravity load may therefore be placed in
the first category. This is confirmed by tests and analyses in Ref, 9.11 that show that the
sway magnification of gravity moments by the sway multiplier is unwarranted.
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The maximum magnified moments caused by sway loading oceur at the ends of
the column, but those due to gravity loads may oceur somewhere in the midheight of
the column, the exact location of the latter varying depending on the end moments,
Because magnified gravity moments and magnified sway moments do not occur at the
same location, the argument can be made that, in most cases, no magnification should
be applied to the nonsway moments when sway moments are considered; that is, it is
unlikely that the actual maximum moment will exceed the sum of the nonmagnified
gravity moment and the magnified sway moment. Consequently, for cases involving
sidesway, Eq. (9.11) is replaced by

*Ml = M]JL‘-‘ + '.fMlt {9;?}
Mg - M?.er + ' .\MEF {g.ig}
where M, = smaller factored end moment on compression member
M, = larger factored end moment on compression member

M,,. = factored end moment on compression member at the end at which M,
acts, due to loads that cause no appreciable sidesway, calculated using a
first-order elastic frame analysis

M, = factored end moment on compression member at the end at which M,
acts, due to loads that cause no appreciable sidesway, calculated using a
first-order elastic frame analysis

M, = factored end moment on compression member at the end at which M,
acts, due to loads that cause appreciable sidesway, calculated wsing a
first-order elastic frame analysis

M, = factored end moment on compression member at the end at which M,
acts, due to loads that cause appreciable sidesway, calculated wvsing a
first-order elastic frame analysis

-, = moment magnification factor for frames not braced against sidesway, to
reflect lateral drift resulting from lateral (and sometimes gravity) loads

The need to calculate M, as well as M, will be explained shortly.

ACI Code 10.13.4 provides three alternate methods for calculating the magni-
fied sway moments, - .M.

With the first alternative, the column end moments are calculated using a second-
order analysis based on the member stiffnesses given in Section 9.5,

With the second alternative, the magnified sway moments are calculated as

M, = M, =M {(9.19

sy T I . Q - ¥ * }

where (2 is the stability index calculated using Eq. (9.10). The ACI Code limits appli-

cation of Eq. (9.19) to values of - . = 1-(1 = @) = 1.5. One of the other two alternate
methods must be used for higher values of -

For the third alternative, the ACI Code permits the magnified sway moment to

be calculated as y

: =
1 - P 075 P,

in which 2P, is the total axial load on all columns and 2P, is the total critical buck-
ling load for all columns in the story under consideration. As with Eq. (9.12), the 0.75
factor in Eg. (9.20)) is a stiffness reduction factor to provide a conservative estimate of
the critical buckling loads P.. The individual values of P, are calculated using Eq.

M=

i

M, (9.20)
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(9.13) with effective length factors & for unbraced frames (Fig. 9.13b) and values of
Ef from Eq. (9.15) or (9.16).

For the three alternate methods used to caleulate - M, the factor - is defined
differently than it is for nonsway frames. As described earlier, in Section 9.5, for sway
frames - ; is the ratio of the maximum factored sustained shear within a story to the
maximum factored shear in that story. Thus, for most applications, - ; = 0 for the pur-
pose of calculating - M. In unusual situations, - ; ¥ 0 will occur, such as a building
located on a sloping site that is subjected to soil pressure on a single side (Refs. 9.12
and 9.13).

It is noted in ACl Commentary 10.13.4 that the moment magnifier procedure may
underestimate the magnified moment for columns in structures that undergo significant
torsional displacement under lateral load. The discrepancy is greatest tor columns far-
thest from the center of twist. The Commentary suggests that three-dimensional second-
order analysis should be considered in such cases.

Equations (19.17) and (19.18) are based on the assumption that the maximum
moments in columns in sway frames are the end moments. However. as shown in Fig.
9.7¢, the maximum moment may oceur at any point along a length of a column. As
described in Ref. 9.14, for values of

— (9.21}

the maximum moment is likely to exceed the value calculated in Eq. (9.18) by more
than 5 percent. To account for the additional moment magnification, ACI Code 10.13.5
requires that under the conditions represented by the inequality in Eq. (9.21), columns
must be designed as nonsway columnys based on Eqgs. (9.11), (9.13), and (9.9). with M,
and M, calculated using Egs. (9.17) and (9.18), respectively. The smaller moment, M,
is used in Eq. (9.9) to calculate C,. - ; is defined for the load combination under con-
sideration. and & is defined for a nonsway frame.

To protect against sidesway buckling of an entire story under gravity loads alone,
ACI Code 10.13.6 places additional restrictions on sway frames. The form of the
restriction depends on the method used to calculate - M

1. When - M, is computed based on a second-order elastic analysis, the ratio of the
second-order lateral deflections to the first-order lateral deflections under 1.4D +
1.7L plus lateral load shall not exceed 2.5.

2. When M, is computed using Eq. (9.19), the value of 0 using 2P, for 1.4D +
1.7L shall not exceed 0.60. [This comresponds to -, = 1.{1 — @) = 2.5]

3. When - M, is computed using Eq. (9.20), -, computed using 2, and 2P, corre-
sponding to 1.4D + 1.7L shall be positive and shall not exceed 2.5,

For all three methods of checking sidesway instability under gravity loads, - ;is
caleulated for the full story as the ratio of the maximum factored sustained axial load
to the maximum factored axial load for the story, rather than as the ratio of maximum
factored sustained shear within the story to maximum factored shear in the story, and
the gravity load 2P, is based on 1.4D + 1.7L. rather than 1.2D + 1.6L or 1.2D +
1.0OL. T Method (1) involves two analyses, one first-order and one second-order, for the

P The foad factors, 1.4 and 1.7, which were used for dead and Tive load, respectively, in ACT Codes prior to 2002, have been retained in the 2002
AT Casdes Tor this portion of the slendemess caleulations,
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structure under factored gravity loads plus lateral load. Any reasonable lateral load
distribution can be used for the analyses. The ratio of the deflection from the second-
order analysis to the deflection from the first-order analysis is limited to a value of 2.5,

For method (2), the value of O calculated in Eq. (9.10) can be conservatively
modified for use in the stability check by multiplying by

14D+ LIL-1 + - gy
12D + 10L 1 + - 4

(at)

where the subscripts A and Vrepresent -, based on total story axial load and total story
shear, respectively. ACI Commentary 10.13.6 points out that if O from Eq. (9.10) is
less than or equal to 0.2, the stability check is satisfied. This conservative limit on ¢
from Eq. (9.10) is based on assumed values of - ,, = Oand -, = 1 (i.e. all axial load
is sustained) and an L- D ratio of 2. Assuming that the live load is twice the dead load,

mn-t.4>-<|+1.7>~<2--1+1-_M:I
2%+ l0x2 0 +0

exactly satisfying the upper limit. ¢ = 0.6, in ACI Code 10.13.6. If Q from Eq. (9.10)
is somewhat greater than 0.2, the actual values of D, L. - . - 5 should be used to
determine O for the stability check.

For method (3), -, can be calculated from - |, in Eq. (9.20} by multiplying the
original 2P 2P term by the same term as used to modify @ [see Eq. (a)]. ACI Com-
mentary 10.13.6 points out that, although -, = 2.5 is very high. the value is selected
to offset the conservatism inherent in the moment magnifier procedure. In any case, if
the appropriate restriction is violated, the structure must be stiffened.

The sequence of design steps for slender columns in sway frames is similar to
that outlined in Section 9.6 for nonsway frames, except for the requirement that loads
be separated into gravity loads, which are assumed to produce no sway. and horizon-
tal loads producing sway. Separate frame analyses are required, and different equiva-
lent length factors & and creep coefficients - . along with extra checks specified for
Eq. (9.21}) and for the possibility of sidesway instability under gravity loads, must be
applied. It will be noted that according to ACl Code 9.2 (see also Table 1.2 of Chapter
1. if wind effects W are included in the design, four possible factored load combina-
tions are to be applied:

=120+ 1.6L

=120+ 16 LorSor R + 0.8W
U=12D+ 1aW+ 10OL+ 05 LorSor R
U= 09D+ 1.6W

Similar provisions are included for cases where earthquake loads are to be considered,
This represents a significant complication in the sway frame analysis: however, the
factored loads can be separated into gravity effects and sway effects, as required, and
a separate analysis can be performed for each,

[t is important 10 realize that, for sway frames, the beams must be designed for
the 1oral magnified end moments of the compression members ar the joint. Even
though the columns may be very rigid, if plastic hinges were to form in the restrain-
ing beams adjacent to the joints, the effective column length would be greatly
increased and the critical column load much reduced.
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The choice of which of the three alternate methods to use for calculating - M,
depends upon the desired level of accuracy and the available analytical tools.

Second-order analysis (discussed in more detail in Section 9.8) provides the
most accurate estimate of the magnified sway moments but requires more sophisti-
cated technigues. The extra effort required for second-order analysis, however, usually
produces a superior design. The second alternative, Eq. (9.19), will in most cases be
the easiest to apply. since matrix analysis is used for virtually all frames o determine
member forces under gravity and lateral loading. Such an analysis automatically gen-
erates the value of A, the first-order relative deflection within a storv, allowing O to
be calculated for each story within a structure. The third alternative, Eq. (9.20). is
retained with minor modifications from previous versions of the ACI Code. As will be
demonstrated in the following example, calenlations using Eq. (9.20) are more tedious
than those needed for Eg. (9.19) but do not require knowledge of A,. Application of
Eq. (9.19) is limited by the Code to values of - | = 1.5, For - | = L5, application of
Eq. (9.20) is mandatory if a second-order analysis is not used.

Design of a slender column in a sway frame, Consider now that the concrete building
frame of Example 9.1 acts as a sway frame, without the stairwells or elevator shafts described
earlier. An initial evaluation is carried out using the member dimensions and reinforcement
given in Example 9.1, The reinforcement tor the interior 18 > 18 in. columns, shown in Fig,
915, consists of four No. 10 (N, 32) bars at the corners and four Mo. 9 (No. 29) bars at the
center of each side. Reinforcement for the exterior 16 % 16 in. columns consists of eight
No. & (Mo, 25) bars distributed in a manner similar to that shown for the longitudinal rein-
torcement in Fig. 9.15. The building will be subjected to gravity dead and Tive Toads and hor-
izontal wind loads. Elastic first-order analvsis of the frame at service loads (all load factors
= 1.0} using the values of £ and / defined in Section 9.5 gives the following results at the
third story:

Corls. A3 and I3

Cols, B3 and E3 Cols, C3 and D3

Poi 115 kips 230 kips 230 kips
e o0 kips 173 kips 173 kips
Poini 30 kips * 18 kips x6 kips
wind 5.5 kips 11 kips I kips
M:I‘“lhml 2 ft-kl]:ls
2 tive 108 fi-kips
Lwdied 84 ft—kip,‘.i
M g =2 ft-kips
Lt 100 ft‘k'lpb
M, =70 fi-kips

To simplify the analysis, roof loads will not be considered. The relative lateral deflection for
the third story under total wind shear V,,, = 55 kips is .76 in.

Column (3 is to be designed for the critical loading condition, using £ = 4000 psi and
o= 60,000 psi as before.
Sorvrion.  The column size and reinforcement must satisfy requirements for each of the
four load conditions noted above.

Initially, a check is made 1o see if a sway frame analysis is required. The factored shear
V,= 16>V, = 1.6 %55 = 88 kips. The corresponding deflection A, = 1.6 X (1L76 =
1.22 in. The total factored axial force on the story is obtained using the load table.

Columns A3 and F3: F,o=12x 115+ L0 = 90 = 228 kips
Columns 83, C3, D3, and E3: P,o= 12230+ L0 = 173 = 449 kips
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Note that in this case the values of P, in the columns are not considered since they can-
cel out for the floor as a whole, ie, ZF, = 0 Thus, 2P, = 2 % 228 + 4 ¥ 440 =
2252 kips, and the stability index is

P _ 2252w 1.22
Vi, 88 % 14 x 12

0= =019
Since @ = 0.05, sway frame analysis is required for this story.

(a) Gravity loads onlyv. All columns in sway frames must first be considered as braced
columns under gravity loads acting alone, i.e.. for I/ = 1.2D + L6L. This check has already
been made for column C3 in Example 9.1,

(b} Gravity plus wind loads. Three additional load combinations must be considered
when wind effects are included: (/= 1.20 + 1.6(L, or Sor B) + 08W, [/ = 1.2D + 1.6W
+ LOL + 05(L, or Sor R), and &/ = 0.9D + 1.6W. By inspection, the second of these will
control for this case, and the others will not be considered further. From Example 9.1, =
-, = 2.17. With reference to the alignment chart in Fig. 9.13b, the effective length factor for
an unbraced frame & = 1.64 and

Ky, 164 X 13 X 12

T T oaxiy A4

This is much above the limit value of 22 for short column behavior in an unbraced frame.
(This should be no surprise since &f,-r = 25.1 for column C3 in the braced condition.) For
sway frame analysis, the loads must be separated into gravity loads and sway loads, and the
appropriate magnification factor must be computed and applied to the sway moments. The
tactored end moments resulting from the nonsway loads on column C3 are

M, =12 =2+ L0 = 100 = 98 fi-kips
Mo, = L2 %2+ 1.0 % 108 = 110 ft-kips
The sway effects will amplify the moments
M, =16-70 = —112 fi-kips
M, = 1.6 84 = 134 fi-kips

For the purposes of comparison, the magnified sway moments will be calculated based on
both @ {Eg. (9.19] and ZP,-ZP, [Eq. (9.20].
Using Eq. {9.14%),

It

fl

MH - 112 Lo
M, = = = — 138 fi-kips
AT T T T T 009 ps
M Mo 134 165 fi-ki
. = = = » - S
£ By 1 - Q 0.8-] 'P‘

To use Eq. (9.20), the critical loads must be calculated for each of the columns as fol-
lows, For columns A3 and F3,

Columns: [ =071, =07 % 16 % 167 12 = 3823 in’
and [ f, = 3823 14 % 12 = 228 in’
Beams: I = 4838 in*and I |, = 1680’
Rotational restraint factors for this case, with two columns and one beam framing into the
joint, are

. 228+228

e = 68 =271
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which, with reference to the alignment chart for unbraced frames, gives & = 1.77. For wind
load. - ;= 0. Since reinforcement has been initially selected for one column, Ef will be cal-
culated vsing Eq. (9.15),

El=02E1+EJ,=02xX36%X10°%16 % 16" 12 + 29 % 10° % 6 X 0.79 % 6.6
=992 % 10" in’-lb
Then the critical load is

ST 092 % 10!
P o= 7= 1.51 X 10°1b
ATT 13 % 12

For columns B3, C3, D3, and E3, from earlier calculations for column C3, & = 1.64 for the
sway loading case. For these columns,

Ef=023%36x10%x 18 x 18712 £ 20 % 10° 4 % 1.27 ¥ 647 + 2 % 1.0 ¥ 6.5
= 14.8 ¥ 10" in*-1b

P 148 % 107
P, = - =262 % 10" b
1.64 % 13 % 12-°

Thus, for all of the columns at this level of the structure,
CPo=2 31510 4 4 % 2620 = 13,500 kips

and finally, the magnified sway moments for both the top and the bottom of column C3 are

M, = acl = 1 = 144 fi-kips
T TR 075 P 1= 2252 075 X 13,500 P
Mo, 134

M, = = = 172 fi-kips

b= P 075 P 1 — 0222
The values of - M, are higher based on 2P, -ZP, than they are based on Q (172 fi-kips vs,
165 fi-kips for - M.,)., emphasizing the conservative nature of the moment magnifier
approach based on Fq. (9.20). The design will proceed using the less conservative value of
M,

The wotal magnified moments are

M, = 98 — 138 = —40 fi-kips
M, = 110 + 165 = 275 fi-kips

combined with factored axial load P, = 459 kips (now including 1.6F ;
Graph A6 with column parameters

¥

1. In reference to

b _ 459 = (0,545 ksi
fA, 065 x4x34 O
M 275

. 51 = 0218 ksi

JAK D65 % 4% 324 % I8

it is seen that - , = 0.030. This is slightly higher than the value of 0.026 required for column
3 in a braced frame. The required steel area of

A, =003 %34 =972in"

will be provided nsing eight No, 10 (No, 32) bars, arranged as shown in Fig, 9.16. Spacing
of Mo, 3 (No. 10) ties must not exceed the least dimension of the column, 48 tie diameters,
or 16 main bar diameters. The second eriterion controls, and No, 3 (No, 100 ties at 18 in,
spacing will be used in the pattern shown in Fig. 9.16.
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FIGURE 9.16 18—
Cross section of column O3,
i 9.2,
Example 9.2 7% ™8 No. 10 (No. 32) bars
18"
L Mo, 3 (Mo, 10) ties @ 187

Clear cover 15

Two more checks are required to complete the design. First, in accordance with Eq.
(9.21). a higher magnified moment must be calculated vsing the values of M| and M, and
Eqs. (9.00) (2.13), and (9.9 if [, r - 35 - P, A, Inthis case. [, r = 13 12:(0.3 x IB)
= 29 compared 10 35 - 459 .4 % 324 = 59, indicating that the current analysis and
design are satisfactory.

A second check is needed (o protect against sidesway instability of the entire story under
gravity loads. When @ is used to compute - M, O may not exceed 0.60. For this check. the
moments of inertia used to caleulate A for use in Eq. (9.10) must be divided by 1 + -
with -, equal to the ratio of the sustained factored axial load to the maximum factored axial
load and ZP, must be based on 1.40 + .70, This check is satisfied without further caleu-
lation, however, if the value of { from Eq. (9.10) does not exceed 0.20. Since ¢ based on
Eq. (9107 is 0,19, the stability check is satisfied for the third story,

SeconND-ORDER AMALYSIS FOR SLENDERNESS EFFECTS

It may be evident from the preceding examples that. although the ACl moment mag-
nifier method works well enough for nonsway frames, its application to sway frames
is complicated, with many opportunities for error, especially when Eq. (9.20) is usad
to caleulate - M.

With the universal availability of computers in design offices, and because of the
complexity of the moment magnitier method, it is advantageous to apply rational
second-order frame analysis, or P-A analysis, in which the effects of lateral deflection
on moments, axial forces, and, in turn, lateral deflections are computed directly. The
resulting moments and deflections include the effects of slenderness, and so the prob-
lem is strictly nonlinear.

Second-order analysis is encouraged in general by ACI Code 10.10.1 and in par-
ticular for sway frames by ACI Code 101.13.4.1. A second-order analysis is required by
ACl Code 10.11.5 for all compression members with ki -r greater than [00.
According to the Code, such analyses “shall be based on the factored forces and
moments from a second-order analysis considering material nonlinearity and crack-
ing., as well as the effects of member curvature and lateral drift, duration of the loads,
shrinkage and creep, and interaction with the supporting foundation.” Member dimen-
sions used in the second-order analysis must be within 10} percent of the final dimen-
sions. Otherwise. the frame must be reanalyzed. ACI Code 10.10.1 requires that the
second-order analysis procedure be one that provides a strength prediction that is in
“substantial agreement” with test resules for reinforced concrete columns in statically
indeterminate frames. ACl Commentary 10.10.1 suggests that a prediction within 15
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percent of the test results is satisfactory. 1t also suggests that a stiffness reduction fac-
tor -, of (.80 be used to provide consistency with the second-order analysis for sway
frames described in ACI Code 10.13.4.1.

Satisfying all of the requirements of ACI Code 10.10.1 on a member-by-member
basis would be highly inefficient. As pointed out in Ref. 9.14, the key requirement for
El values for second-order frame analysis is that they be representative of member
stiffness just prior to failure. The values of £ and [ in Section 9.5 (ACI Code 10.11.1)
meet that requirement and include a stiffness reduction factor of 0.875 (Ref. 9.14). The
value of the stiffness reduction factor and the moments of inertia in Section 9.5 are
higher than the factor 0.75 in Egs. (9.12) and (9.19) and the effective values of [ in
Eqs. (9.15) and (9.16), respectively, because of the inherently lower variability in the
total stiffness of a frame compared to that of an individual member. ACI Code 10.13.4
authorizes the use of £ and [ from Section 9.5 in second-order analyses to determine
magnified sway moments.

A rational second-order analysis gives a better approximation of actual moments
and forces than the moment magnifier method. Differences are particularly significant
for irregular frames, for frames subject to significant sway forces, and for lightly
braced frames. There may be important economies in the resulting design.

Practical methods for performing a full second-order analysis are described in
the literature (Refs. 9.3, 9,15, 9.16, 9.17, and 9.18 to name a few), and general-purpose
programs that perform a full nonlinear analysis including sway effects are commer-
cially available. Existing linear first-order analysis programs, however, can be modi-
fied to produce acceptable results. This requires an iterative approach, which can be
summarized as follows.

Figure 9.17a shows a simple frame subject to lateral loads H and vertical loads
P. The lateral deflection A is calculated by ordinary first-order analysis. As the frame
is displaced laterally, the column end moments must equilibrate the lateral loads and
a moment equal to (ZP)A:

- M, + M, =Hl, + P (9.22)

o
where A is the lateral deflection of the top of the frame with respect to the bottom, and
2P is the sum of the vertical forces acting. The moment £PA in a given story can he
represented by equivalent shear forces (2P)A- 1., where [, is the story height, as shown
in Fig. 9.17h. These shears give an overturning moment equal to that of the loads P
acting at a displacement A,

Fig. 9.17¢ shows the story shears acting in a three-story frame. The algebraic
sum of the story shears from the columns above and below a given floor correspond
in effect to a sway force dH acting an that floor. For example, at the second floor the
sway force is

am, = B (9.23
T, i =)

The sway forces must be added to the applied lateral force H at any story level, and
the structure is then reanalyzed. giving new detlections and increased moments. If the
lateral deflections increase significantly (say more than 5 percent), new dH sway
forces are computed, and the structure is reanalyzed for the sum of the applied lateral
forces and the new sway forces. Iteration is continued until changes are insignificant.
Generally one or two cycles of iteration are adequate for structures of reasonable lat-
eral stiffness (Ref. 9.3).
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FIGURE 9.17
Basis for iterative P-A analysis: {a) vertical and lateral loads on rectangular frame: (4 real lateral forces H and fictitious sway
forces ai (c) three-story frame subject to sway forces, (Adapred from Refl 903
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It iz noted in Ref. 9,15 that a correction must be made in the analysis o account
for the differences in shape between the PA moment diagram that has the same shape
as the deflected column, and the moment diagram associated with the PA-T forces,
which is linear between the joints at the column ends. The area of the actual FPA
moment diagram is larger than the linear equivalent representation, and consequently
lateral deflections will be larger. The difference will vary depending on the relative
stiffnesses of the column and the beams framing into the joints. In Ref. 9,15, it is sug-
gested that the inereased deflection can be accounted for by taking the sway forces «H
as I3 percent greater than the calculated value for each iteration, Iteration and the 15
percent increase in deflection are not required if the program performs a full nonlin-
car geometric analysis, since the PA moments are calculated in full,

The accuracy of the resulis of a P-A analysis will be strongly influenced by the
values of member stiffness used, by foundation rotations, if any, and by the effects of
concreie creep. In connection with creep effects, lateral loads causing significant sway
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are usually wind or earthquake loads of short duration, so creep effects are minimal.
In general, the use of sway frames to resist sustained lateral loads, e.g.. from earth or
liquid pressures, is not recommended, and it would be preferable to include shear
wills or other elements to resist these loads.
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The 15 ¥ 15 in. column shown in Fig. P9.1 must extend from footing level to
the second floor of a braced frame structure with an unsupported length of 20.5
ft. Exterior exposure requires 2 in. clear cover for the outermost steel. Analysis
indicates the critical loading corresponds with the following service loads:
(a) from dead loads. P = 170 kips. M, , = 29 ft-kips, M, , = 4.5 fi-kips:
(4} from live loads. P = 100 kips. M, = 50 fi-kips. M, = 25 ft-kips. with
the column bent in double curvature as shown. The effective length factor &
determined using Fig. 913 is 0.90. Material strengths are ) = 4000 psi and
. = 60,000 psi. Using the ACl moment-magnifier method, determine whether
the column is adequate to resist these loads.
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9.2, The structure shown in Fig, P9.2a requires tall slender columns at the left side,
It is fully braced by shear walls on the right. All columns are 16 X 16 in., as
shown in Fig, P9.2b, and all beams are 24 > 18 in. with 6 in. monolithic floor
slab, as in Fig. P%.2¢. Trial calculations call for column reinforcement as
shown. Alternaie load analysis indicates the critical condition with column AB
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bent in single curvature, and service loads and moments as follows: from dead
loads, P = 139 kips. M, = 61 ft-kips. M, = 41 ft-kips: from live load. P =
93 kips. M, = 41 ft-kips. M, = 27 ft-kips. Material strengths are f = 4000
psi and f, = 60,000 psi. Is the proposed column, reinforced as shown, satis-
factory for this load condition? Use Eq. (9.16) to calculate ET for the column.
Refine the calculations of Problem 9.2, using Eq. (9.15) to calculate EY for the
column. The reinforcement will be as given in Problem 9.2. Comment on your
results.

An interior column in a braced frame has an unsupported length of 20 ft and
carries the following service load forces and moments: {a) from dead loads,
P = 180 kips. M,,, = 28 ft-kips. M, = —28 fi-kips: (£} from live loads, P =
220 kips. M, = 112 fi-kips. M, = 112 ft-kips. with the signs of the moments
representing double curvature under dead load and single curvature under live
load. Rotational restraint factors at the top and bottom may be taken equal to
1.0. Design a square tied column to resist these loads, with a reinforcement
ratio of about 0.02. Use £ = 4000 psi and f, = 60,000 psi.

The first three floors of a multistory building are shown in Fig. P9.5. The lat-
eral load resisting frame consists of 20 > 20 in. exterior columns, 24 % 24 in.
interior columns, and 36 in. wide % 24 in. deep girders. The center-to-center
column height is 16 ft. For the second-story columns, the service gravity dead
and live loads and the horizontal wind loads based on an elastic first-order

analysis of the frame are:

Cols. A2 and B2 Cols. B2 and D2 Col. C2

P 348 kips T57 kips 688 kips

P 137 kips 307 kips 205 kips

P =19 kips =9 kips 0 kips

Viing 6.5 kips 13.5 kips 13.5 kips
Mldmu' 31 fl—kipS
2 tive 161 ft-kips
2 i 105 ﬂ_kjps
M].r.[mu’ =34 ft—kipS
1 five 108 ft-kips
M i —O8 ft-kips

A matrix analysis for the total unfactored wind shear of 53.5 kips, using val-
ues of £ and [ specified in Section 9.5, indicates that the relative lateral deflec-
tion of the second story is 0.24 in. Design columns B2 and D2 using Eq. (9.19)
to caleulate - M. Material strengths are ) = 4000 psi and f, = 60.000 psi.

- . —— —_ -
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9.6.

9.7.

Repeat Problem 9.5 using Eq. (9.20) to caleulate - M. Comment on your
results,

Redesign column C3 from Example 9.2 for a story height of 16 ft, a column
unsupported length of 15 fi. and a relative lateral displacement of the third
story of 1.10 in. Loads and other dimensions remain unchanged.



