DIRECT SHEAR TEST

SOIL MECHANICS

SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DIRECT SHEAR TEST

OBJEVTIVES

To determine the shear strength parameters for a given soil using the direct shear test.

INTRODUCTION

The test is carried out on either undisturbed samples or remoulded samples. To facilitate the remoulding purpose, a soil sample may be compacted at optimum moisture content in a compaction mould. Then specimen for the direct shear test could be obtained using the correct cutter provided. Alternatively, sand sample can be placed in a dry state at a required density, in the assembled shear box.

A normal load is applied to the specimen and the specimen is sheared across the pre-determined horizontal plane between the two halves of the shear box. Measurements of shear load, shear displacement and normal displacement are recorded. The test is repeated foe two or more identical specimens under different normal loads. From the results, the shear strength parameters can be determined.

THEORY

The strength of a soil depends of its resistance to shearing stresses. It is made up of basically the components;

- 1. Frictional due to friction between individual particles.
- 2. Cohesive due to adhesion between the soil particles

The two components are combined in Colulomb's shear strength equation,

$$\tau_f = c + \sigma_f \tan \phi$$

Where τ_f = shearing resistance of soil at failure

c = apparent cohesion of soil

 σ_f = total normal stress on failure plane

 \emptyset = angle of shearing resistance of soil (angle of internal friction)

This equation can also be written in terms of effective stresses.

$$\tau_f = c' + \sigma'_f \tan \phi$$

Where c' = apparent cohesion of soil in terms of effective stresses

- σ'_f = effective normal stress on failure plane
- σ' = angle of shearing resistance of soil in terms of effective stresses
- $\sigma'_f = \sigma_f u_f$
- u_f = pore water pressure on failure plane

PROCEDURE

1. Assemble the shear box

- 2. Compact the soil sample in mould after bringing it to optimum moisture condition
- 3. Carefully transfer the sample into shear box

4. Place the loading plate on top of the upper porous plate. After recording the weight of the loading carrier place it is on the loading cap.

- 5. Position all dial gauges and set the readings to zero. Remove the alignment screws which hold two halves of the shear box together
- 6. Tighten the remaining, two diagonally opposite screws, until there is a small gap between upper and lower boxes to reduce the frictional force
- 7. Apply the desired normal load. If there is any vertical displacement, wait till the dial gauges indicate a constant reading and then reset the dial gauge to zero
- 8. Check that screws have been removed and then start the motor to produce the desired constant rate of shearing

- 9. Take readings of,
 - a) Shear load from the proving ring
 - b) Shear displacement (i.e. Horizontal displacement)
 - c) Vertical displacement at every 10 division increment in horizontal dial gauge
- 10. Stop the test when the shear load starts to reduce or remains constant for at least three readings
- 11. Remove the soil and repeat the procedure with different normal loads at least for another two samples

COMPUTATION

- 1. For each specimen plot the following;
 - a. Shear stress Vs shear displacement
 - b. Normal displacement Vs shear displacement
 - c. Void ratio Vs shear displacement
- 2. Plot the graph of shear strength Vs normal stress for the three specimens and calculate the shear strength parameters for the soil.

REPORT

Your report should include a brief but accurate description of the test procedure and all the above mentioned graphs. Also it should include a discussion of the followings;

- a) Importance of the shear strength in soil
- b) The normal displacement behavior of the specimen during shearing
- c) Different types of shear tests
- d) The main advantages and disadvantages of shear box test
- e) Reliability of the results and the factors most likely to influence the reliability

Department of Civil Engineering								
University of	University of Moratuwa							
Direct Shear	Direct Shear Test Results							
Load Deform	nation Reading	s						
Project	· · ·							
Sample No.								
Type of Test	:							
Proving read	ing Constant	=			Vertic	al Dial Gauge	Constant	
Normal Load	l Applied	=			Horiz	ontal Dial Gau	ige Constant :	
Moisture	Con	tent	Mass of	Wet sa	mple +	Can(g) =		
Determinatio	n		Mass of	Dry sar	nple +	Can(g) =		
			Mass of	Can (g))	=		
		-	Moisture	e Conte	nt (%)	=		
Shear Disp.	Proving	Ver	tical	Chang	e in	Void Ratio	Shear force	Shear
div.	Ring	Dis	•	Void I	Ratio		(kg)	Stress
	reading	(mr	n)					(kN/m^2)
0								
10								
20								
30								
40								
50								
75								
100								
125								
150								
175								
200								
225								
250								
275								
300								
325								
350								
375								
400								
425								
450								
475								
500								
					_			

TEST :3

Normal Stress = 150 kN/m^2

Observations :

Weight of shear box without sand	\mathbf{W}_1	=
Weight of shear box with sand	W_2	=
Top plate dimensions	H_{t1}, H_{t2}	=
Bottom plate dimensions	H_{b1}, H_{b2}	=
Shear box dimensions		= 60mm X 60 mm
Internal height of the shear box	H_1	=
(without sand)		
Internal height of the shear box	H_2	=
(with sand)		

Calculations:

Thickness of the soil sample, H	$= H_1 - H_2 - (H_{b2} - H_{b1})/2 - H_{t2} + (H_{t2} - H_{t1})/2$			
	=			
	=			
Volume of the soil, V	=			
Weight of the soil sample, W	= W ₁ -W ₂			
Dry Density of Soil sample, γ_d	= W/V =			
Initial Void ratio, e ₀	$=G_S\gamma_w/\gamma_d-1; \ G_S=2.65$			
	=			
	=			

Specimen calculation for Vertical displacement/ Void ratio

01 div. of vertical dial gauge reading	= 0.001 x 25.4 mm = 0.0254mm
Corresponding Void ratio change, Δe	$= \Delta H (1 + e_0)/H$
	=
Corresponding Void ratio $e = e_0 - \Delta e$	=
	=

Specimen calculation for Shear displacement

01 div. of horizo	ontal dial gauge	reading	= 0.01mm
-------------------	------------------	---------	----------

Specimen calculation for Shear Force/ Shear stress

01 div. of Proving ring reading	=
	=
Area correction for shear displacement	=
Eg. For shear displacement div =	area =
Corresponding proving ring reading is	=
Shear stress	=

TEST :1

Normal Stress = 50 kN/mm^2

Observations :

Weight of shear box without sand	\mathbf{W}_1	=	2.665
Weight of shear box with sand	W_2	=	2.910
Top plate dimensions	H_{t1}, H_{t2}	=	1.70mm, 3.44mm
Bottom plate dimensions	H_{b1}, H_{b2}	=	1.74mm, 3.26mm
Shear box dimensions		=	60mm X 60 mm
Internal height of the shear box (without sand)	H_1	=	43.60 mm
Internal height of the shear box (with sand)	H ₂	=	0mm

Calculations:

Thickness of the soil sample, H		$H_1-H_2-(H_{b2}-H_{b1})/2-H_{t2}+(H_{t2}-H_{t1})/2$
	=	43.60-(3.26-1.74)/2-3.44+(3.44-1.70)/2
	=	40.27mm
Volume of the soil, V	=	60x60x40.27 mm ³
	=	$1.45 \times 10^{-4} \text{ m}^3$
Weight of the soil sample, W	=	W ₁ -W ₂
	=	2.910-2.665 kg = 0.245 kg
Dry Density of Soil sample, γ_d	=	$W/V = 0.245 / 1.45 \times 10^{-4} \text{ kg/ m}^3$
Initial Void ratio, e_0	=	$G_S \gamma_w / \gamma_d - 1; \ G_S = 2.65$
	=	$2.65 \times 10^3 / 1689.66 - 1$
	=	0.568

Specimen calculation for Vertical displacement/ Void ratio

01 div. of vertical dial gauge reading	=	0.001x25.4mm
	=	0.0254mm
Corresponding Void ratio change, Δe	=	$\Delta H (1 + e_0)/H$
	=	0.0254(1+0.568)/40.27
	=	0.989×10^{-3}
Corresponding Void ratio $e = e_0 - \Delta e$	=	$0.568 - 0.989 \times 10^{-3}$
	=	0.567

01 div. of horizontal dial gauge reading	= 0.01mm
--	----------

Specimen calculation for Shear Force/ Shear stress

01 div. of Drowing ring reading	-0.61ha	
of aiv. of Proving fing reading	- 0.0108	
	= 0.6/2.206 kg	
	= 0.272 kg	
Area correction for shear displacement		
Eg. For shear displacement 200 div = $2mm$	area = $60 \text{ x} (60-2) = 3480 \text{ mm}^2$	
Corresponding proving ring reading is	= 6 div = 6 x 0.272 kg = 1.632 kg	
Shear stress	= 1.632/3480 kg/mm ²	
	= 4.60 kN/ m ²	

Department of Civil Engineering								
University of Moratuwa								
Direct Shear Test Results								
Load Defor	rmation Rea	adings						
Project	:							
Sample No	. :							
Type of Te	st :							
Proving rea	ading Const	tant = 0.6 lbs/c	div.		Vertical D	ial Gauge C	onstant =	= 0.001"
Normal Lo	ad Applied	= 18.341	kg (50	(kN/m^2)	Horizontal	Dial Gauge	e Constant	= 0.01mm
Moisture C	Content Dete	ermination		Mass o	f Wet sample	e + Can(g)	=	
				Mass o	of Dry sample	e + Can(g)	=	
				Mass o	f Can (g)		=	
	D :	× · · 1	. .	Moistu	re Content (%	⁄o)	=	G1
Shear	Proving	Vertical	Vei	tical	Change in	Void	Shear	Shear
Disp.	Ring	Gauge	Dis	• ``	Void	Ratio	force	Stress
div.	reading	Reading	(m)	n)	Katio	0 5 (0 0 0	(Kg)	(KIN/m^2)
0	0	0	0		0.00000	0.56800	0.00000	0
10	1	-0.5	-0.()127	-0.00049	0.56849	0.27199	0.756777
20	2	-1	-0.0)254	-0.00099	0.56899	0.54397	1.516084
30	2.5	-2	-0.0)508	-0.00198	0.56998	0.67996	1.89828
40	3	-2	-0.0)508	-0.00198	0.56998	0.81596	2.281758
50	3.5	-2	-0.0508		-0.00198	0.56998	0.95195	2.666524
75	4	-2.5	-0.0635		-0.00247	0.57047	1.08794	3.060315
100	4.5	-3.5	-0.0)889	-0.00346	0.57146	1.22393	3.457443
125	5	-4.5	-0.1	143	-0.00445	0.57245	1.35993	3.85795
150	5.5	-5.5	-0.1	397	-0.00544	0.57344	1.49592	4.261881
175	6	-6.5	-0.1	651	-0.00643	0.57443	1.63191	4.669279
200	6	-7.5	-0.1	905	-0.00742	0.57542	1.63191	4.689405
225	6	-8.5	-0.2	2159	-0.00841	0.57641	1.63191	4.709706
250	6	-9.5	-0.2	2413	-0.00940	0.57740	1.63191	4.730183
275	6	-10.5	-0.2	2667	-0.01038	0.57838	1.63191	4.750838
300	6	-11.5	-0.2	2921	-0.01137	0.57937	1.63191	4.771675
325	6	-12	-0.3	3048	-0.01187	0.57987	1.63191	4.792696
350	6	-12	-0.3	3048	-0.01187	0.57987	1.63191	4.813903
375	6	-12	-0.3	3048	-0.01187	0.57987	1.63191	4.835298
400	6	-12	-0.3	3048	-0.01187	0.57987	1.63191	4.856884
425								
450								
475								
500								

Figure 2. Void ratio vs Shear Displacement

From Figure. 1; Variation of Shear strength of sand with Normal Shear Stress can be obtained as follows.

Normal Stress, σ kN/m ²	Shear stress at failure, $\tau kN/m^2$
. 50	4.765
100	12.70
150	16.01

Results

Shear Strength parameters for Soil used in this test

Cohesion, c	$= 0 \text{ kN/m}^2$
Friction angle, ϕ	$= 6.1^{\circ}$