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nits of Stress:

International Standard or SI svstem, the magnitudes of both normal and
shear stress are specified in the basic units of newtons per square meter
(N/m”). This unit, called a pascal (1 Pa = 1 N/m”) is rather small. and
in engineering work prefixes such as kilo- (107}, symbolized by k.
mega- ( 100), symbolized by M, or giga- (107), symbolized by G, are used
o represent larger. more realistic values of stress® Likewise, in the
Foot-Pound-Second system of units, engineers usually express stress in
pounds per square inch (psi) or kilopounds per square inch (ksi), where
| kilopound (kip) = 100D 1b.




Important Points

Procedure for Analysis

¥ When a body subjected to external loads is sectioned, there is a
distnbution of force acting over the sectioned area which holds
cach segment of the body in equilibrium, The intensity of this
mternal force al a pome in the body is referred o as stresy,

Stress 1§ the hmiting value of force per unit area, as the area
approaches zero. For this defimtion, the material is considered (o
be cantinuous and cohesive.

The magnitude of the stress components at a point depends upon
the type of loading acting on (the body, and the orientation of the
element at the point.

When a prismatic bar is made from homogencous and isotropic
matenal, and is subjected to an axial force acting through the
centroid of the cross-sectional area, then the center region of
the bar will deform uniformly. As a result, the material will be
subjected anly fo sornal stress, This siress is uniform or averaged
over the cross-sectional area.

The equation @ = P/ A gives the average normal stress on the eross-
sectional area of & member when the section is subjected to an
mternal resultant normal force P. For avially loaded members,
application of this equation requires the following steps.

Internal Loading,

* Section the member perpendicular to its longitudinal axis at the
point where the normal stress is to be determined and use the
necessary free-body diagram and force equation of equilibrium to
abtain the internal axial force P at the section.

Average Normal Stress.

* Deternune the member's cross-sectional area at the section and
calculnte the average normal stress o = PfA,

* Itis suggested that o be shown acting on 2 small volume element
of the material located at a pomt on the section where stress is
caleulated, To do this first draw o on the face of the element
coincident with the sectioned area A. Here o acts m the same
direction as the internal force P gince all the normal stresses on
the eross section develop this resultant. The normal stress o on
the other face of the element acts in the opposite direction,




Average Shear Stress

Twe = average shear stress at the section, which s assumed (o be the
same at each point located on the section

= internal resultant shear force on the section determined from
the equations of equilibrium

==
I

A = area at the section

The loading case discussed here s an example of simple or direct
shear, since the shear 1s caused by the direct action of the applied load F,
This type of shear often occurs in various (vpes of simple connections
that use bolts, pms, welding matenal, etc. In all these cases. however,
application of Eq. 1-7 is enly approximate. A more precise investigation
of the shear-stress distribution over the section often reveals that much
larger shear stresses oceur in the matenal than those predicted by this
equation. Although this may be the case, applicaton of Eq. 1-7 s
generally acceptable for many problems in engineering design and
analysis. For example, engineering codes allow its use when considering
design sizes for fasteners such as bolts and for obtaining the bonding

strength of glued jonts subjected to shear loadings.




Procedure for Analysis

The equation 7T,.,. = V/A is ased to determine the average shear
stresy in the material. Application reguires the following steps.

Imternal Shear.

= Scction the member at the point where the average shear stress is
0 be determaned.

= Diraw the necessary free-body diagram, and calculate the internal
shear Torce VW acting at the section that s necessary o hold the
part in eguilibrivma.

Average Shear Stress.

= Determine the sectioned area A, and determine the average
shear stress r,,, = V /A,

= It is suggested that 1, be shown on a small volume element of
material located ag a point on the section where it is determained.
To do this, first draw r,,. on the face of the element. coincident
with the sectioned arca . This stress acts i the sare direction
as V. The shear stresses acting on the three adjacent planes can
then be drawn i theiwr approprnate directions followmg the
scheme shown in Fg. 1-21.




Allowable Stress

necessary to restrict the stresses

To have safety against any errors

1N materia

Unknown vibrations, accidental loads and over loads

Atmospheric erosions and decays etc.

Due to high variability in material properties.

* Factor of Safety

One method of specifving the allowable load for a member is to use a
number called the factor of saferv. The factor of safety (FS.) 1s a ratio of
the failure load F i to the allowable lkead F ), Here Fi, is found from
experimental testing of the material. and the factor of safety is selected
based on experience so that the above mentiomed uncertainties are
accounted for when the member is used under stmilar conditions of
loading and geometry, Stated mathematically,

FI'!III

FJJ].:I

RS (1-8)




Im any of these equations, the factor of safety must be grearer than | in
order to avoid the potential for failure. Specific values depend on the
tvpes of materials to be used and the intended purpose of the structure
or machme, For example, the FS. used in the design of mireraft or space-
vehicle components may be close to 1 i order to reduce the weight of
the vehicle. Or, in the case of a nuclear power plant. the factor of safety
for some of its components may be as high as 3 due to uncertainties
i loading or matenal behavior. In many cases. the factor of salety for 4
specific case can be found in design codes and engineerimg handbooks,
These values are mtended to form a balance of ensuring public and
environmental safety and providing a reasonable economie solution 1o
desien.



Shear Stress-Solved Examples

* What force is required to punch a 20-mm-diameter
hole in a plate that is 25 mm thick? The shear strength

is 350 MN/m?2. ®
Puncher |-
20 mm @

The resisting area is the shaded area . .
along the perimeter and the shear force o
V' is equal to the punching force P.

V=14 Punched out |—\ ]

P = 350[n(20)(25)] WT 25 mm

=5407787 N Lia A

= 5498 kN



e e
As in Fig. 1-11c, a hole is to be punched out of a plate having a shearing strength of 40

ksi. The compressive stress in the punch is limited to 50 ksi. (a) Compute the maximum
thickness of plate in which a hole 2.5 inches in diameter can be punched. (b) If the
plate i1s 0.25 inch thick, determine the diameter of the smallest hole that can be

punched.
(a) Masimuon thickness of plate:
Based on puncher strength:
P=oA
= 30| i— m(2-3%]
= 781m kips - Equivslert shear forca of the plate
Dased on shear strength of plate:

ll-'-

"

V=14 V=P ‘

781257 = 40[n(2.5¢)] Fegura 1-11n

t = 0751 inch

(b) Diameter of smallest hole:
Based on compression of puncher:

P=cA
= 30 3 nd’) Based on shearing of plate:
= 12 Squd? % Eguivalent shea: force for plate V=1A Sy =p

12 5md? = 40[md(0.25)]
4=0.8in
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Find the smallest diameter holt that can he used in the clevis shown in Fig. 1-11h if P =

400 kN. The shearing strength of the bolt is 300 MPa.

The bolt is subject to double shear.
V=14

400(1000) = 300[2( + mad?|]

d=2913 mm
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The members of the structure in Fig. P-120 weigh 200 Ib/ft. Determine the smallest
diameter pin that can be used at A if the shearing stress is limited to 5000 psi. Assume

single shear.

Figure P-120 r g
For member AE: 6 ft
ol 5
Lengt]LLm=4i-'i.+f1 .k
=566
Weight, W, = 5.66(200)
=11321b 4k - 3k
M, =0
dRpy + 4Ry = 2War

4Rgy + 4Rgv = 2(1132)
Ruy + Ry = 5606 — (1)

For member BC

Length, Lyc = +3° -6’
=6.711t
Weight, Wac = 6.71(200)
=13421b




ZMe=0
6Rmi = 1.5Wac + 3Rpy

6Rg; — 3Ry, = 1.5(1342)
2Rmi — Rpy = 071 - (2)

Add equations (1) and (2)
Ry + Rgy = 300 - (1)
2Rwi -Rev=671 —(2)
3Ry = 1237
Rpy—412331b

From equation (1):
41233 + Rpy = 566
Rm‘.'= 15367 Ib

FBD of member BC From the FED of member AD
2Fa=0
Rapi = Ren=412 33 1h

ZFv=0

Ray + Ryy =Wy
Rsy +15367 = 1132
Esv=978331b

Ra= Ry’ +Ryy’

= 412 33! + 978 332
=1001.67Ib -3 shear force of pin at A

V=14
1061 67 = 5000(  nd?)
d =0.520in



(a)

(b)

In Fig. 1-12, assume that a 20-mm-diameter rivet joins the plates that are each 110

mm wide. The allowable stresses are 120 MPa for bearing in the plate material and &0

MPa for shearing of rivet. Determine (a) the minimum thickness of each plate; and (b)

the largest average tensile stress in the plates.

From shearing of rivet:
P = tAriven
= 60[ 4 n(207)]
=0000x N

From bearing cf plate matenal:

P=gpAs
6000m = 120(20¢)
f=7.85 mm

T p
1 ] 110 MM e—
' i
20-mm &
A | ’rlf-:_ | - J
prooaona ll soaas W —
T wre 1-12

Largeﬂt average tensile stress i the pl&te:

P=gA
6000x = o[7.85(110 — 20)]
g = 20,67 MPa



The lap joint shown in Fig. P-126 is fastened by four 34-in.-diameter rivets. Calculate I

the maximum safe load P that can be applied if the shearing stress in the rivets is
limited to 14 ksi and the bearing stress in the plates is limited to 18 ksi. Assume the

applied load is uniformly distributed among the four rivets.

T : -$-
T [ Ye™ =5
78 in 7/8 in
- = =S—fTr——— * >
P | — i — = o
Based on sheanng of rivets:
FP=1A
P =144 Gm)7]
P =24 74 kips
Based on b-eanng of Platea:
P=gy A
P= 18[4{-}][-%]]
P = 47 .25 kips

Safe load P = 24.74 kips



In the clevis shown in Fig. 1-11b, find the minimum bolt diameter and the minimum

thickness of each yoke that will support a load P = 14 kips without exceeding a shearing

straess of 12 ksi and a bearing stress of 20 ksi.

l.

Figure 1-11b

For shearing of nivets (double
shear)

P P=xA

14 =12[2(dnd")]

d =10.8618 in =< diameter of bolt

For bearing of yoke:
P=gy Ay
0.59 0.5p 14 = 20[2(0.8615¢)]
ol el t=04061in > thickness of yoke

Drnhlam 17372



Figure P-130 shows a root truss and the detail of the nveted connection at joint B. Using

allowahle stresses of r = 70 MPa and o,= 140 MPa, how many 19-mm diameter rivets
are required to fasten member BC to the gusset plate? Member BE? What i1s the largest

average tensile or compressive stress in BC and BE?

4m1 4 m 4 4m 1 & m
v
96 kN WOkN 95 KN
Figure P-130 and P-131




At Jeriat O
FTFu=0
BC = 9% kIY (Tension)

Consider the secton
memniser BD,

BE, aavd CE:

=Ny = O

B{ = BE) = 4{986)

BE = 80 kN (Compression)

For Meonber BC:

Based on sheanng of rivets:

BC = A

Where A = area of 1 civet = mummnber of rivets, o
S 000 = FOf & (1% )]

= 4.8 aay 5 rviveta

Mﬁmﬂmt

B = oy

Where As. = diaogwter of mivet ® thickywss of B =
nasnlker af rivets, i

O OO0 = 1A0[1H&):]

o= 502 aay 7 rivets

mse T rivets for muemiber BC

For orwmniber BE:

!--dmntm-sntﬂwu:

BE = z.A

WWhere A = area of 1 rivet = ruamber of rivets,
80 000 = 7O[ L m{19%)x]

F -d..m-.yﬁnv-u

Based on beanng of owmmniiser:

BE = op Ay

Where A, = disamneter of rivet = thickwess of BE =
murnker of rvets.

80 000 = LA0[113)n]

ro= 2 3% say 3 rivets

nse 5 rivets for member BE

Eslevant dAata from thw table (Appenclix B 2 of
textbonlkcy: Propertias of Equal Angles Sactiona: ST Linits

Desigginatica:  Adea

LTS = 75 = & 864 o
L5 = 75 = 13 1780 v
Tensiles stress of memnber BO (L5 = 75 = &):
o= L o _25(1000)
Y Bod — 1o)
o = 128 Mipa

Compressive stress of memniber BE (L5 = 75 = 13):
o = L - BO(1000)

A 1780
o = 3. 94 Mpa



Elastic Behavior. Elastic behavior of the material occurs when
the strains in the specimen are within the light orange region shown (n
Fig. 34, Here the curve s actually a straight line throughowt most of
this region, 5o that the stress s propartanal to the stram.The material
in this region is said Lo be linear elasric The upper stress limit Lo this
linear relationship 15 called the preportienal limir, o, 1f the stress
shghtly exceeds the proportional liot, the curve tends (o bead and
flatten out as shown This continues until the stress reaches the elasric
limis. Upon reaching this point, if the load is removed the specimen
will still return back 1o its original shape. Normally for steel, however
the elastic lmit 15 seldom determined, since it is verv close to the
proportional limit and therefore rather difficult 1o detect,

Yielding. A slight increase in siress above the elastic limit will result
in a breakdown of the material and cause it to deform permanently.
This behavior is cailed ylelding. and it is indicated by the rectangulas
dark orange region of the curve The stress that causes vielding is called
the vield stress or yield point oy and the deformation that oceurs
is called plastic deformation. Although not shown in Fig. 34, for low-
carbon steels or those that are hot rolled. the vield pont s often
distinguished by two values. The wpper vield poinr occurs first,
followed by a sudden decrease in load-carrving capacity to & lower
yield point. Notice that once the vield point is reached. then as shown
in Fig. 34, the specimen will continue to elongate (strain) without any
thcrease in load When the material is in this state, it is olten referred 1o
as being perfectly plasiic.

ol ane trie stress-strain i
| |EM{M¢HNW

Strain Hardening. When yielding has ended. an increase in load can
be supported by the specimen, resulting in a curve that rises continnously
but becomes flatter until it reaches a maximum stress referved to as the
wltimate stress, «r,. The rise in the curve in this manner is called strain
hardening. and it is identified in Fig. 3-4 as the region in light green.

Necking. Up to the ultimate stress. as the specimen elongates, its
cross-sectional area will decrease. This decrease is fairly wniform over the
specimen’s entire gauge length; however, just after, at the ultimate
stress, the cross-sectional area will begm to decrease m a localized
region of the specimen, As a result, a constriction or “neck” rends to
form in this region as the specimen elongates further, Fig. 3-5a. This
region of the curve due to necking is indicated in dark green in Fig. 3-4,
Here the stress—strain diagram tends to curve downward until the specimen
breaks at the fracture siress, o, Fig. 3-5h



* In most of the material, the stress strain relationship is
linear i.e. Increase in stress leads to proportionate increase

in the strain:

rT=EE

) ]
* E represents Young's Mod
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Important Points

A conmventional stress-serain diagram is important in engineering
since it prowides a means for obtaining data about a material’s
tensile or compressive strength without regard for the material’s
physical size or shape.

Engineering siresy and strain are calculated using the original
cross-sectional area and gauge length of the specimen.

A ductile material, such as mild steel, has four distinct behaviors as
it is loaded. They are elastic behavior, vielding, strain hardeming. and
necking .

A material is Lnear elastic if the stress is proportional o the strain
within the elastic region. This behavior is described by Hooke's daw,
a = Ee, where the modidus of elestciry E s the slope of the line.

Important points on the stress—straim diagram are the proportional
lirriet, elaxtic Lvit, vield stress wlttonate stresy, and fracoare stress,

The ductility of a material can be specified by the specimen’s
percent elonganon or the percent recducteon in area.

If a material does not have a distinet vield point. a yield strength can
be specified using a graphical procedure such as the offser method.

Bristle materials. such as gray cast ivon, have very little or no
vielding and so they can fracture suddenly.

Strain hardening is used 1o establish a higher yvield point for a
material This is done by straining the material bevond the elastic
limit, then releasing the load. The modulus of elasticity remains
the same, however, the matenal’s ductility decreases,

Seratn emergy is energy stored in a material due toits deformation.
This energy per unit volume is called strain-emergy density. I
it is measured up 10 the proportional limit, it is referred to as
the modulies of resilience, and if it is measured up to the point
of fracture, it is called the maodalus of toughness, It can be
determined from the arca under the or—e diagram,




Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but 11 also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise. a compressive force actmg on a bodv causes
it tocontract in the direction of the foree and vet its sides expand laterally

Consider a bar having an onginal radius r and length L and subjected
toy the tensile force P in Fig 3-21. Thas force elongates the bar by an
amaunt & and its radius contracts by an amount &' Strains in the
longitudmal or axal direction and  the lateral or radial direction are.

respectively, H'\
£ .

e & — 5' -
Ejion = 5 ADL By = _
¥ L r Orrginnd Shinpe — g - = Firal Shape

In the zarly 18008 the French scientist S. D, Poisson realized that within
elistic range the ratio of these strains is a constant, since the deformation
& and &' are proportonal. This constant |s referred 10 as Poissons ratio,
¢ (nu), and it has a numerical value that is unique for a particular material
that is both homoegeneons and wotrapic. Stated mathematically it s

Tansion &

p = = l?,ﬂ]

€)onp




